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STATISTICAL DEPTH

Consider the depth of x ∈ Rd w.r.t. P ∈ P
(
Rd)

D : Rd × P
(
Rd
)
→ [0, 1] : (x,P) 7→ D(x;P).
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HALFSPACE DEPTH

Halfspace depth (Tukey, 1975) of x ∈ Rd

hD(x;P) = inf
H∈H(x)

P (H) .
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STATISTICAL DEPTH FUNCTION

Statistical depth is a function

D : Rd × P
(
Rd
)
→ [0, 1] : (x,P) 7→ D(x;P),

that satisfies (Zuo and Serfling, 2000b)

1. affine invariance;
2. maximality at the centre for symmetric distributions;
3. monotonicity relative to the depth median;
4. vanishing at infinity.

Sometimes it is required also (Serfling, 2006b)

5. upper semi-continuity as a function of x;
6. continuity as a functional of P;
7. quasi-concavity in x.
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PART II: DEPTHS IN MATHEMATICS

Symmetry of random variables

Depth of a median — Grünbaum’s theorem

Measures of symmetry

Funk’s characterization of symmetry

Quasi-Concavity: Floating body

Dupin’s floating body

Convex floating body
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SYMMETRY OF RANDOM VARIABLES



CONVEX BODIES

Convex body is a non-empty, compact and convex set K ⊂ Rd.
We write also K ∈ Kd (Webster, 1994; Schneider, 2014).
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CONVEX BODIES

Star body is K ⊂ Rd, such that for some x ∈ K and any k ∈ K it
holds [x, k] ⊂ K. (Schneider, 2014; Groemer 1996).
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SYMMETRY OF CONVEX BODIES

A convex body K ∈ Kd is (centrally) symmetric about θ ∈ Rd iff

K− θ = −(K− θ).
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SYMMETRY OF DISTRIBUTIONS

X ∼ P ∈ P (R) is (centrally) symmetric about θ ∈ R iff

X− θ
d
= −(X− θ).
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SYMMETRY OF MULTIVARIATE DISTRIBUTIONS

X ∼ P ∈ P (R) is (centrally) symmetric about θ ∈ R iff

X− θ
d
= −(X− θ).

Multiple generalizations to P
(
Rd) (Serfling, 2006):

ä spherical symmetry;
ä elliptical symmetry;
ä central symmetry;
ä angular symmetry (Liu, 1988);
ä halfspace symmetry (Zuo and Serfling, 2000).
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SPHERICAL SYMMETRY

X ∼ P ∈ P
(
Rd) is spherically symmetric about θ ∈ Rd iff

X− θ
d
= A(X− θ)

for any A ∈ Rd×d orthogonal.
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ELLIPTICAL SYMMETRY

X ∼ P ∈ P
(
Rd) is elliptically symmetric about θ ∈ Rd iff

X d
= ATY+ θ

for Y ∈ Rk spherically symmetric, and A ∈ Rk×d of rank k (≤ d).
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CENTRAL SYMMETRY

X ∼ P ∈ P
(
Rd) is centrally symmetric about θ ∈ Rd iff

X− θ
d
= −(X− θ).
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CENTRAL SYMMETRY

X ∼ P ∈ P
(
Rd) is centrally symmetric about θ ∈ Rd iff

〈X− θ,u〉 are (centrally) symmetric for all u ∈ Sd−1.
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ANGULAR SYMMETRY

X ∼ P ∈ P
(
Rd) is angularly symmetric about θ ∈ Rd iff (Liu, 1988)
X− θ

‖X− θ‖
d
= − X− θ

‖X− θ‖
. (here 0/0 = 0)
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ANGULAR SYMMETRY

X ∼ P ∈ P
(
Rd) is angularly symmetric about θ ∈ Rd iff (Liu, 1988)
X− θ

‖X− θ‖
is centrally symmetric about 0.
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HALFSPACE SYMMETRY

X ∼ P ∈ P
(
Rd) is halfspace symmetric about θ ∈ Rd iff

(Zuo and Serfling, 2000)
hD(θ;P) ≥ 1/2.
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HALFSPACE SYMMETRY

X ∼ P ∈ P
(
Rd) is halfspace symmetric about θ ∈ Rd iff

〈θ,u〉 is a median of 〈X,u〉 for all u ∈ Sd−1.
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RELATIONS OF SYMMETRY CONCEPTS

Proposition (Zuo and Serfling, 2000)
In the space of probability measures P

(
Rd)

spherical symmetry =⇒ elliptical symmetry =⇒ central symmetry
=⇒ angular symmetry =⇒ halfspace symmetry.

No implication can be reversed.
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CENTRAL =⇒ ANGULAR =⇒ HALFSPACE SYMMETRY

central symmetry 6⇐= angular symmetry
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CENTRAL =⇒ ANGULAR =⇒ HALFSPACE SYMMETRY

angular symmetry 6⇐= halfspace symmetry
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CENTRAL =⇒ ANGULAR =⇒ HALFSPACE SYMMETRY

angular symmetry 6⇐= halfspace symmetry
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ANGULAR AND HALFSPACE SYMMETRY

Proposition (Zuo and Serfling, 2000, Theorem 2.6)
Suppose a random vector X is halfspace symmetric about a
unique point θ ∈ Rd, end either

1. X is absolutely continuous, or
2. X is discrete and P(X = θ) = 0.

Then X is angularly symmetric about θ.

Remark. The centre of halfspace symmetry of X ∼ P ∈ P
(
Rd)

is a unique point, unless d = 1 and X has two medians.

24/169



NON-SYMMETRIC DISTRIBUTION

Distribution which is not halfspace symmetric:

sup
x∈R2

hD(x;P) = 4/9
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DEPTH AND SYMMETRY

H-symmetry ) A-symmetry ) C-symmetry ) E-symmetry )
S-symmetry

A desired property of the data depth:

2. maximality at the centre for symmetric distributions;

Proposition (Zuo and Serfling, 2000b)
For X ∼ P ∈ P

(
Rd) symmetric about θ ∈ Rd

hD (θ;P) = sup
x∈Rd

hD(x;P).
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DEPTH OF A MEDIAN

Testing for H-symmetry of P ∈ P
(
Rd) (Dutta et al., 2011)

Tn =

(
1/2− sup

x∈Rd
hD(x;Pn)

)
+
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MINIMUM DEPTH OF THE MEDIAN

For P ∈ P
(
Rd) uniform in the vertices of a simplex

(Donoho and Gasko, 1992)

sup
x∈Rd

hD(x;P) = (d+ 1)−1 −−−→
d→∞

0
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MAXIMUM DEPTH OF THE MEDIAN

For X ∼ P angularly symmetric about θ ∈ Rd

(Rousseeuw and Struyf, 2004, Theorem 1)

sup
x∈Rd

hD(x;P) = hD(θ,P) = 1/2+ P({θ})/2.
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PROBLEM: DEPTH OF THE MEDIAN

Problem (Donoho and Gasko, 1992; Dutta et al., 2011)
The depth of a median of an absolutely continuous
distribution in Rd lies in the interval [1/(d+ 1), 1/2]. Can we
say more?
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DEPTH OF CONVEX BODIES

Population depth of a convex body K ∈ Kd
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CALCULUS OF CONVEX BODIES

K+ L = {x+ y : x ∈ K, y ∈ L} , λK = {λx : x ∈ K}
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THE BRUNN-MINKOWSKI INEQUALITY

K+ L = {x+ y : x ∈ K, y ∈ L} , λK = {λx : x ∈ K}

Proposition (Brunn, 1887; Minkowski, 1896)
Let K, L ⊂ Rd be convex bodies, vol (K) = vol (L) = 1. Then
vol ((K+ L)/2) ≥ 1, with equality iff K is a translate of L.

ä Function K 7→ vol (K)1/d is concave on Kd.
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GRÜNBAUM’S INEQUALITY

Proposition (Grünbaum, 1960)
Let K ∈ Kd, vol (K) = 1. Then there is a point x ∈ K such that

hD (x; K) ≥
(

d
d+ 1

)d
.

The bound is attained iff K is a simplex.

ä Grübaum proves a stronger statement:
The theorem holds with x = E K.

ä limd→∞

(
d

d+1

)d
= exp(−1) ≈ 0.37.
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BACKGROUND: WINTERNITZ THEOREM

Proposition (Winternitz, 1917)
For K ∈ K2 with centroid x ∈ K

hD(x; K) ≥ 4/9 =

(
2

2+ 1

)2
.

This bound is attained iff K is a triangle.
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BACKGROUND: WINTERNITZ THEOREM

Arthur Winternitz (1893 – 1961)

ä graduated (1917) and worked (1917 – 1939) at the German
University in Prague;

ä the Winternitz theorem first appears in Blaschke (1923);
ä independently rediscovered by

1935 Lavrentjev and Lyusternik;
1945 Neumann;
1951 Yaglom and Boltyanskii;
1955 Ehrhart;
1958 Newman;

ä Theorem extended to d = 3 by Ehrhart (1956);
ä For general d conjectured by Ehrhart (1955), proved

independently by Grünbaum (1960) and Hammer (1960).
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WINTERNITZ THEOREM FOR MEASURES

Version with P ∈ P
(
Rd) (Donoho and Gasko, 1992):

sup
x∈Rd

hD(x;P) ≥ 1
d+ 1 .

Previously noted by

ä Neumann (1955), Yaglom and Boltyanskii (1951), Newman
(1958) for d = 2;

ä Rado (1946), Birch (1959), Grünbaum (1960) for all d;
ä Grünbaum (1960) shows that the bound is attained iff P is

uniform in the vertices of a simplex.
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WINTERNITZ THEOREM FOR CONCAVE MEASURES

Definition (Borell, 1974)
For κ ∈ [−∞,∞) we say that P ∈ P

(
Rd) is a κ-concave

measure iff

P(λA+ (1− λ)B) ≥


P(A)λP(B)1−λ for κ = 0,
min{P(A),P(B)} for κ = −∞,

(λP(A)κ + (1− λ)P(B)κ)1/κ otherwise.

for all A,B ⊂ Rd Borel and λ ∈ [0, 1].
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PROPERTIES OF CONCAVE MEASURES

For a κ-concave measure P ∈ P
(
Rd):

ä for any τ < κ is P also τ-concave;
ä if κ > 1, P must be a Dirac measure;
ä uniform measures on convex bodies are 1/d-concave;
ä if P has a density, then κ ≤ 1/d;
ä if κ = 0, P is called log-concave;
ä if κ > −1, then P has a mean value;
ä if κ = −∞, P is called quasi-concave.
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WINTERNITZ THEOREM FOR CONCAVE MEASURES

Proposition (Bobkov, 2010, Theorem 5.2)
For κ ∈ (−1, 1] and κ-concave X ∼ P ∈ P

(
Rd)

hD(E X;P) ≥

exp(−1) for κ = 0,(
1

1+κ

)1/κ
otherwise.

There are κ-concave measures that attain this bound.

Problem
Can we say something about the case κ ≤ −1?
What about points other than E X?

Note: For κ = 0 the theorem was already known in economics.
(Caplin and Nalebuff, 1988)
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DEPTH IN ECONOMICS AND SOCIAL SCIENCES

Optimal shop location problem (Carrizosa, 1996)
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WINTERNITZ THEOREM

Proposition (Winternitz, 1917)
For K ∈ K2 with centroid x ∈ K

hD(x; K) ≥ 4/9 =

(
2

2+ 1

)2
.

This bound is attained iff K is a triangle.
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WINTERNITZ MEASURE OF SYMMETRY

Definition (Winternitz, 1917; Blaschke, 1923)
For K ∈ Kd, x ∈ K and a halfspace H ∈ H(x), consider

f(H, x) = vol (K ∩ H)
vol (K)− vol (K ∩ H)

and f(x) = min {f(H, x) : H ∈ H(x)}. The Winternitz measure of
symmetry of the body K is then given by

F(K) = max {f(x) : x ∈ K} .

f(x) = hD(x; K)
1− hD(x; K)
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MEASURES OF SYMMETRY

Definition (Grünbaum, 1963)
A function s : Kd → [0, 1] is called a measure of symmetry iff

1. s(K) = 1 iff K has a centre of (central) symmetry;
2. s(K) = s(T(K)) for every K ∈ Kd and every non-singular

affine transformation T : Rd → Rd;
3. s is continuous on Kd.
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MINKOWSKI’S MEASURE OF SYMMETRY

For K ∈ Kd, x ∈ K

D(x; K) = inf
H∈H(x)

dist(∂H, ∂H1)

dist(∂H, ∂H2)
,

where H1 and H2 and parallel to H, and support K.
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KÖVNER-BESICOVITCH MEASURE OF SYMMETRY

For K ∈ Kd, x ∈ K (Besicovitch, 1951)

D(x; K) = vol (K ∩ (2x− K)) .
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MACBEATH’S CONSTRUCTION

For K ∈ Kd, x ∈ K (Macbeath, 1951)

D(x; K) = vol (K ∩ (2x− K)) .
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MACBEATH’S CONSTRUCTION

For K ∈ Kd, x ∈ K (Macbeath, 1951)

D(x; K) = vol (K ∩ (2x− K)) .
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MACBEATH’S CONSTRUCTION

For K ∈ Kd, x ∈ K (Macbeath, 1951)

D(x; K) = vol (K ∩ (2x− K)) .
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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WINTERNITZ MEASURE OF SYMMETRY

For K ∈ Kd, x ∈ K

hD(x; K) = inf
H∈H(x)

vol (K ∩ H)
vol (K) .
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MEASURES OF SYMMETRY

Definition (Grünbaum, 1963)
A function s : Kd → [0, 1] is called a measure of symmetry iff

ä s(K) = 1 iff K has a centre of (central) symmetry;
ä s(K) = s(T(K)) for every K ∈ Kd and every non-singular

affine transformation T : Rd → Rd;
ä s is continuous on Kd.
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FUNK’S CHARACTERIZATION OF SYMMETRY

Proposition
A convex (or star) body K ⊂ Rd is centrally symmetric iff

sup
x∈K

hD(x; K) = 1/2.

From the definition of the halfspace symmetry we get

Proposition
A convex body is halfspace symmetric ⇐⇒ it is centrally
symmetric.
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FUNK’S CHARACTERIZATION OF SYMMETRY

Some history:

ä for d = 2 the problem is considered trivial;
ä shown for d = 3, and conjectured for any d by Paul Funk

(1913);
ä fully proved only by Schneider (1970) using functional

equations;
ä newer proofs involve spherical integration (Falconer, 1983);
ä extensions use spherical harmonics (Groemer, 1996);
ä no elementary proof known for d > 3.
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FUNK’S CHARACTERIZATION OF SYMMETRY

For K ∈ Kd: H-symmetry ⇐⇒ A-symmetry ⇐⇒ C-symmetry.
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ANGULAR AND HALFSPACE SYMMETRY

Proposition (Zuo and Serfling, 2000, Theorem 2.6)
Suppose a random vector X is halfspace symmetric about a
unique point θ ∈ Rd, end either

1. X is absolutely continuous, or
2. X is discrete and P(X = θ) = 0.

Then X is angularly symmetric about θ.

For P uniform on K ∈ Kd this implies Funk’s characterization!
(for convex (star) bodies angular symmetry ≡ central
symmetry)
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PROOF I (ZUO AND SERFLING, 2000)

Proof only for d = 2, for the sake of simplicity (p. 73).
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ANGULAR AND HALFSPACE SYMMETRY II

Proposition (Dutta et al., 2011, Theorem 2)
Suppose a random vector X is halfspace symmetric about
θ ∈ Rd. Then X is angularly symmetric about θ.

Proof II: For d = 2, general case “analogous”.
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ANGULAR AND HALFSPACE SYMMETRY III

Proposition (Rousseeuw and Ruts, 2003, Theorem 2)
If there is a point θ ∈ Rd with

hD(θ;P) = 1/2+ P({θ})/2,

then X ∼ P is angularly symmetric about θ.
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IDEA OF THE PROOF (ROUSSEEUW AND STRUYF, 2004)

(i). The map x 7→ (x1/ |xd| , x2/ |xd| , . . . , xd/ |xd|) takes H(0) to
halfspaces passing through hyperplanes
H± =

{
x ∈ Rd : xd = ±1

}
.

(ii). Apply the Cramér-Wold device (Cramér and Wold, 1936) in Rd−1.
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ANGULAR AND HALFSPACE SYMMETRY: PROOF III

Proof works for any d, using only the Cramér and Wold device.

Proposition (Cramér and Wold, 1936)
Any distribution X ∼ P ∈ P

(
Rd) is uniquely determined by the

totality of its one-dimensional projections 〈X,u〉, u ∈ Sd−1.

First simple proof of the characterization.
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WINTERNITZ MEASURE OF SYMMETRY: OTHER PROPERTIES

As collected by Grünbaum (1963):

ä level sets of hD are convex and closed;
ä for any K ∈ Kd the halfspace median is unique;

Proposition (Blaschke, 1923; Grünbaum, 1963)
For any convex body K ⊂ Rd whose halfspace median is x ∈ K,
there exists a collection of at least d+ 1 halfspaces {Hi} such
that

∪
i Hi = Rd, x ∈

∩
i Hi, and

P(Hi) = hD(x; K) = sup
y∈Rd

hD(y; K).

For each such Hi the point x is the centroid of ∂Hi ∩ K.
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MINIMIZING HALFSPACE AND BARYCENTRIC CUT

Call H ∈ H(x) a minimizing halfspace of P ∈ P
(
Rd) at x if

P(H) = hD(x;P),

and a hyperplane ∂H a barycentric cut of P at x if the centroid
of the cut (conditional expectation) of P by ∂H is x.
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BARYCENTRIC CUTS OF A CONVEX BODY

Independently, it was proved in geometry/statistics:

1. For K ∈ Kd, the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).

2. Minimizing halfspaces of the median x of K ∈ Kd cover Rd.
(Donoho and Gasko, 1992)

Observation / Problem (Grünbaum, 1963)

For all K ∈ Kd there exist (d+ 1) barycentric cuts through the
halfspace median x of P.
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HELLY’S THEOREM FOR DEPTH MEDIAN
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover Rd
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover Rd
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GRÜNBAUM’S PROBLEM OPEN AGAIN

Rd may be covered by less than (d+ 1) minimizing halfspaces
(Patáková, Tancer, and Wagner, 2020)
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GRÜNBAUM’S PROBLEM OPEN AGAIN

Rd may be covered by less than (d+ 1) minimizing halfspaces
(Patáková, Tancer, and Wagner, 2020)

Question: Do (d+ 1) barycentric cuts pass through the
halfspace median of all K ∈ Kd? 98/169



GRÜNBAUM’S PROBLEM OPEN AGAIN

Rd may be covered by less than (d+ 1) minimizing halfspaces
(Patáková, Tancer, and Wagner, 2020)

Question: Do (d+ 1) barycentric cuts pass through some point
for all K ∈ Kd? 99/169



UNIQUENESS OF THE DEPTH MEDIAN

As collected by Grünbaum (1963):

ä level sets of hD are convex and closed;
ä for any K ∈ Kd the halfspace median is unique.

In statistics, we have

Proposition (Mizera and Volauf, 2002, Proposition 7)
Under conditions (S) and (C), the halfspace median of
P ∈ P

(
Rd) is unique.

The result is incomplete, the proof works only for d = 2.
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A MEASURE WITHOUT A UNIQUE MEDIAN

Take P ∈ P
(
R3) the product of

uniform on a triangle in R2 and Cauchy in R
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UNIQUENESS OF THE HALFSPACE MEDIAN

Proposition (Nagy, Pokorný, Laketa, 2021+)
A measure P ∈ P

(
Rd) has a unique median if

1. (C) is valid,
2. P has a density that is “almost continuous” on

hyperplanes, and
3. an integrability condition is satisfied (existence of

expectation).

Question: Is there a (non-convex) body K ⊂ Rd such that P
uniform on K does not have a unique median?
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CONCLUSIONS: DEPTH AND SYMMETRY

Main messages:

ä symmetry of multivariate distributions is not an easy topic;
ä Grünbaum (1960) knew about the depth before Tukey

(1975);
ä depth of a median is a measure of symmetry;
ä many related open problems.
ä Not mentioned:

W Affine invariant points,
(Grünbaum, 1963; Meyer et al., 2015, 2015b)

W Dimensionality of depth regions.
(Pokorný et al., 2021+)
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QUASI-CONCAVITY: FLOATING BODY



DEPTH: QUASI-CONCAVITY

hD is always quasi-concave, i.e. for each δ ∈ [0, 1]{
x ∈ Rd : hD(x;P) ≥ δ

}
is a convex set
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DEPTH: LEVEL SETS

It holds true that{
x ∈ Rd : hD(x;P) ≥ δ

}
=
∩

{H ∈ H : P(H) ≥ 1− δ}
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MOTIVATION: GRÜNBAUM’S INEQUALITY

Proposition (Grünbaum, 1960)
Let K ⊂ Rd be a convex body, vol (K) = 1. Then

hD (E K; K) ≥
(

d
d+ 1

)d
.
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FLOATING BODY

Definition (Dupin, 1822)
A convex body K[δ] is called the floating body of K ∈ Kd, if
δ ∈ [0, vol (K) /2] and each supporting hyperplane of K[δ] cuts
off a set of volume δ from K.
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FLOATING BODY

Floating body of K for δ = 0.2
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FLOATING BODY

Floating body of K for δ = 0.2
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FLOATING BODY

Floating body of K for δ = 0.2
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FLOATING BODY

Floating body of K for δ = 0.2
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.1
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FLOATING BODY

Floating body of K for δ = 0.1

122/169



FLOATING BODY

Floating body of K for δ = 0.1

123/169



FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K for δ = 0.3
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FLOATING BODY

Floating body of K does not have to exist!
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FLOATING BODY

Floating body of K does not have to exist!
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FLOATING BODY

Floating body of K does not have to exist!
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AFFINE SURFACE AREA OF CONVEX BODIES

Ω(K) =
∫
∂K
κ(x)1/(d+1) dµ(x),

where

ä K is a convex body of class C+
2 ,

ä ∂K is the topological boundary of K,
ä κ is the Gauss-Kronecker curvature of K, and
ä µ is the surface area measure of K

(d− 1-dimensional Hausdorff measure on ∂K).
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AFFINE ISOPERIMETRIC INEQUALITY

Proposition (Blaschke, 1923)
It holds true that

Ω(K)d+1 ≤ dd+1κ2d vol (K)
d−1

with equality only for K ellipsoid. Here, κd is the volume of the
unit ball in Rd.

Ellipsoids have the largest affine surface area.
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CONVEX BODIES: BLASCHKE’S IDENTITY

Proposition (Blaschke, 1923)
If for δ small the floating body of K exists, then for
cd = 2 (κd−1/(d+ 1))2/(d+1)

Ω(K) = lim
δ→0

cd
vol (K)− vol

(
K[δ]
)

δ2/(d+1) .
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AFFINE SURFACE AREA

Ω(K) = limδ→0 cd
vol(K)−vol(K[δ])

δ2/(d+1)
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CONVEX FLOATING BODY

Definition (Schütt and Werner, 1990)
Let K ⊂ Rd be a convex body and δ ∈ [0, vol (K) /2]. The convex
floating body of K associated with δ is given by

Kδ =
∩

{H ∈ H : vol (K ∩ H) ≥ 1− δ} .
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CONVEX FLOATING BODY

Proposition (Schütt and Werner, 1990)
Kδ always exists. If K[δ] exists, then K[δ] = Kδ . Further,

Ω(K) = lim
δ→0

cd
vol (K)− vol (Kδ)

δ2/(d+1) .
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CONVEX FLOATING BODY

Convex floating body of K always exists.
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BÁRÁNY-LARMAN’S MAPPING

Definition (Bárány and Larman, 1988)
For K ∈ Kd and x ∈ K define

ν(x) = min {vol (K ∩ H) : x ∈ H,H ∈ H} .

Similar functions were considered also earlier
(Neumann, 1945; Rado, 1946; Grünbaum, 1960; Leichtweiß, 1986...)

Rado (1946) defines ν in R2 for “densities” f(x, y) : R2 → [0,∞).

Fresen (2012) writes about “multivariate quantiles” given by ν .
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AFFINE SURFACE AREA

Proposition (Schütt and Werner, 1990)
Ω(K) = lim

δ→0
cd

vol (K)− vol (Kδ)
δ2/(d+1) .

Problem: For measures P ∈ P
(
Rd) one may be interested in

the behaviour of the function

δ 7→ 1− P ({hD(·;P) ≥ δ}) = P ({hD(·;P) < δ})

as δ → 0. How to interpret that rate of convergence?
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GNEDENKO’S LAW OF LARGE NUMBERS

Proposition (Fresen, 2013)
Let P ∈ P

(
Rd) be log-concave, and let X1, . . . , Xn be a random

sample from P. Then co (X1, . . . , Xn) for n → ∞ “approximates”
the convex floating body of measure P corresponding to
δ = 1/n.

ä The depth determines the rate of convergence, and the
shape of the convex hull of random samples.

ä Affine surface area describes the “tail complexity” of P.
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GNEDENKO’S LAW OF LARGE NUMBERS

hD1/n(P) ≈ co (X1, . . . , Xn) as n → ∞
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GNEDENKO’S LAW OF LARGE NUMBERS
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GNEDENKO’S LAW OF LARGE NUMBERS

hD1/n(P) ≈ co (X1, . . . , Xn) for n = 10
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GNEDENKO’S LAW OF LARGE NUMBERS

hD1/n(P) ≈ co (X1, . . . , Xn) for n = 100
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GNEDENKO’S LAW OF LARGE NUMBERS

hD1/n(P) ≈ co (X1, . . . , Xn) for n = 1000
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GNEDENKO’S LAW OF LARGE NUMBERS

hD1/n(P) ≈ co (X1, . . . , Xn) for n = 5000

−4 −2 0 2 4

−
4

−
2

0
2

4

−2 −1 0 1 2

−
2

−
1

0
1

2

149/169



DEPTH: ASYMPTOTIC NORMALITY
√
n (hD(x;Pn)− hD(x;P)) is asymptotically normal

⇐⇒ the contour of hD(·;P) is smooth in x
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DEPTH: ASYMPTOTIC NORMALITY
√
n (hD(x;Pn)− hD(x;P)) is asymptotically normal

⇐⇒ the contour of hD(·;P) is smooth in x
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PROBLEM: SMOOTHNESS OF DEPTH

Elliptically symmetric distributions have elliptical depth
contours
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PROBLEM: SMOOTHNESS OF DEPTH

Problem (Massé and Theodorescu, 1994)
Does there exist a non-α-symmetric distribution with smooth
depth contours?

Proposition (Meyer and Reisner, 1991)
Let K be a symmetric convex body. Then

ä Kδ is symmetric and strictly convex,
ä if K is smooth and strictly convex, then Kδ is C+

2 .

=⇒ uniform distributions on smooth, symmetric, strictly
convex sets have smooth depth.

Open problem: What can be said about general distributions
with well-behaved densities?
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SMOOTHNESS: RECTANGLE

Unit ball in L∞ — no smooth depth contours
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SMOOTHNESS: RECTANGLE

Unit ball in L∞ — no smooth depth contours
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SMOOTHNESS: RECTANGLE

Unit ball in L10 — all depth contours smooth
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HOMOTHETY CONJECTURE

Problem (Schütt and Werner, 1994)
Let c, δ > 0 and K = c Kδ . Is then K an ellipsoid?

ä If K = cnKδn for δn → 0 (Schütt and Werner, 1994).
ä If K is C+

2 and K = c Kδ for δ < δ(K) (Stancu, 2006, 2009).
ä If K = c Kδ for δ < δ(K) (Werner and Ye, 2011).

In general still an open problem.
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Conjecture (Struyf and Rousseeuw, 1998)
For any P,Q ∈ P

(
Rd), P 6= Q there exists x ∈ Rd such that

hD(x;P) 6= hD(x;Q).

Partial positive answers: This is true if

ä P and Q are absolutely continuous with a compact support
(Koshevoy, 2001);

ä P and Q are empirical (Koshevoy, 2002);
ä P is atomic (Cuesta-Albertos and Nieto-Reyes, 2008);
ä P and Q have smooth densities (Hassairi and Regaieg, 2008);
ä P and Q have smooth depth contours (Kong and Zuo, 2010).
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Proposition (Hassairi and Regaieg, 2008, Theorem 3.2)
Let P ∈ P

(
Rd) have a density that is smooth in the interior of

its connected support. Then for any H ∈ H

P(H) =

supx∈∂H hD(x;P) if xP /∈ H,
1− supx∈∂H hD(x;P) if xP ∈ H,

where xP is the halfspace median of P.

=⇒ P is characterized by its depth
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HASSAIRI AND REGAIEG’S CHARACTERIZATION

Not true — can be valid only for P halfspace symmetric.

P(H) =

supx∈∂H hD(x;P) if xP /∈ H,
1− supx∈∂H hD(x;P) if xP ∈ H,
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CHARACTERIZATION USING FLOATING BODIES

Definition
A convex body P[δ] is called the floating body of a measure
P ∈ P

(
Rd), if δ ∈ [0, 1/2] and each supporting hyperplane of

P[δ] cuts off a set of probability δ.
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CHARACTERIZATION THEOREM

Proposition (Nagy, Schütt, Werner, 2017)
Let P ∈ P

(
Rd) satisfy (C), and let xP be the halfspace median

of P. Then the following are equivalent

ä For each δ ∈ (0, 1/2) the floating body of P exists.
ä P satisfies (S), and for each H ∈ H

P(H) =

supx∈∂H hD(x;P) if xP /∈ H,
1− supx∈∂H hD(x;P) if xP ∈ H.

In particular, P is characterized by its depth.
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CHARACTERIZATION THEOREM: SPECIAL CASES

Comments:

ä For any symmetric, full-dimensional, κ-concave
P ∈ P

(
Rd) with κ > −1 the floating bodies P[δ] exist for all

δ ∈ (0, 1/2); (Meyer and Reisner, 1991; Ball, 1991; Bobkov, 2010)

ä Under (C):

P has smooth depth =⇒ (S) and P[δ] exist for all δ
=⇒ P is H-symmetric
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Conjecture (Struyf and Rousseeuw, 1998)
For any P,Q ∈ P

(
Rd), P 6= Q there exists x ∈ Rd such that

hD(x;P) 6= hD(x;Q).

Partial positive answers: This is true if

ä P and Q are empirical
(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021);

ä if all Dupin’s floating bodies of P exist
(Hassairi, Regaieg, 2008; Kong, Zuo, 2010; Nagy, Schütt, Werner, 2019).

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)

Proposition (Nagy, 2021)
For any d > 1 there are two measures in P

(
Rd) with the same

depth.
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DEPTH CHARACTERIZATION: PROOF I

Recall that P ∈ P
(
Rd) is α-symmetric (Eaton, 1981) if

ψ(t) =
∫
Rd

exp (i 〈t, x〉) dP(x) = ξ (‖t‖α) for all t ∈ Rd

for some ξ : R → R. For X = (X1, . . . , Xd) ∼ P, these measures
satisfy

〈X,u〉 d
= ‖u‖α X1 for all u ∈ Sd−1.

For the depth of α-symmetric P

hD (x;P) = inf
u∈Sd−1

P (〈X,u〉 ≤ 〈x,u〉) = inf
u∈Sd−1

P (‖u‖α X1 ≤ 〈x,u〉)

= P
(
X1 ≤ inf

u∈Sd−1
〈x,u〉 / ‖u‖α

)
= F1

(
−‖x‖β

)
for β the conjugate exponent to α, and F1 the c.d.f. of X1.

165/169



DEPTH CHARACTERIZATION: PROOF II

Fix γ ∈ (0, 1) and take ψα(t) = exp (−‖t‖γα) for γ ≤ α ≤ 1. Then

ä Measure Pα with characteristic function ψα exists (Lévy,
1937);

ä The conjugate index to α ≤ 1 is β = ∞; and
ä For the characteristic function of X1 with X ∼ Pα we have

E exp (i t X1) = exp (− |t|γ) for all t ∈ R,

i.e. F1 does not depend on α.

All Pα ∈ P
(
Rd) have the same depth

hD (x;Pα) = F1 (−‖x‖∞) for all x ∈ Rd.
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DEPTH CHARACTERIZATION: PROOF III

γ = 1/2: the density of Pα with α = 1 (left) and α = 1/2 (right).
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CONCLUSIONS: DEPTH AND FLOATING BODIES

What we know:

ä Halfspace depth and the floating body are the same
concept.

ä The depth describes the asymptotics of the convex hull of
samples.

ä Depth does not characterize distributions.

What we do not know:

ä When are floating bodies of measures Dupin’s, or smooth?
ä How many barycentric hyperplanes pass through

medians?
ä How large can the median sets be?
ä When does the depth characterize distributions?
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