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STATISTICAL DEPTH

Consider the depth of x € R? w.rt. P € P (RY)

D:RIx P (Rd> —[0,1]: (x, P) — D(x; P).
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STATISTICAL DEPTH

Consider the depth of x € R? w.rt. P € P (RY)

D:RIx P (Rd> —[0,1]: (x, P) — D(x; P).
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HALFSPACE DEPTH

Halfspace depth (Tukey, 1975) of x € R?

hD(x; P) =

inf  P(H).
HEIQL(X)()
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STATISTICAL DEPTH FUNCTION

Statistical depth is a function
D:RIx P (Rd> — [0,7]: (X, P) = D(x; P),
that satisfies (zuo and Serfling, 2000b)

affine invariance;

1.
2. maximality at the centre for symmetric distributions;
3. monotonicity relative to the depth median;

4. vanishing at infinity.

Sometimes it is required also (Serfling, 2006b)

5. upper semi-continuity as a function of x;
6. continuity as a functional of P;
7. quasi-concavity in x.
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PART |I: DEPTHS IN MATHEMATICS

Symmetry of random variables
Depth of @ median — Grinbaum’s theorem
Measures of symmetry

Funk’s characterization of symmetry

Quasi-Concavity: Floating body
Dupin’s floating body
Convex floating body
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SYMMETRY OF RANDOM VARIABLES



CONVEX BODIES

Convex body is a non-empty, compact and convex set K ¢ R¢.
We write also K € K9 (webster, 1994: Schneider, 2014).
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CONVEX BODIES

Star body is K ¢ RY, such that for some x € Kand any k € K it
holds [x, R] C K. (Schneider, 2014; Groemer 1996).
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SYMMETRY OF CONVEX BODIES

A convex body K € K¢ is (centrally) symmetric about 8 € R? iff

K—0=—(K-0).
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SYMMETRY OF DISTRIBUTIONS

X ~ P e P (R) is (centrally) symmetric about 8 € R iff

0.‘4

0.3

072

0.1
i

0.0

10/169



SYMMETRY OF MULTIVARIATE DISTRIBUTIONS

X~ P e P (R) is (centrally) symmetric about 8 € R iff
X—02 _(x—0).
Multiple generalizations to P (RY) (serfling, 2006):

» spherical symmetry;

» elliptical symmetry;

» central symmetry;

» angular symmetry (Liu, 1988);

» halfspace symmetry (Zuo and Serfling, 2000).
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SPHERICAL SYMMETRY

X~ P e P (RY) is spherically symmetric about 8 € RY iff

X—0<AX-0)

for any A € R9%4 orthogonal.

o
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ELLIPTICAL SYMMETRY

X~ PeP(RY is elliptically symmetric about 8 € RY iff

XLATy £ 0

for Y € R¥ spherically symmetric, and A € R*F*9 of rank k (< d).
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CENTRAL SYMMETRY

X~PeP(RYis about 6 € RY iff

4

X—0< —(X-9).
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CENTRAL SYMMETRY

X~PeP(RYis about 6 € RY iff

(X — 0, u) are (centrally) symmetric for all u € S9".
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ANGULAR SYMMETRY

X~ P e P (RY) is angularly symmetric about 8 € R¥ iff (Liu, 1988)

X—0

g _ A=0 (here 0/0 = 0)

IX =6

— o x=el

4
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ANGULAR SYMMETRY

X~ P e P (RY) is angularly symmetric about 8 € R¥ iff (Liu, 1988)

IX =0l

is centrally symmetric about 0.

4
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HALFSPACE SYMMETRY

X~ P e P (RY) is halfspace symmetric about 6 € R iff
(Zuo and Serfling, 2000)

hD(6; P) > 1/2.
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HALFSPACE SYMMETRY

X~ P e P (RY) is halfspace symmetric about 6 € R iff
(0,u) is a median of (X,u)forall ue s

4

19/169



RELATIONS OF SYMMETRY CONCEPTS

Proposition (Zuo and Serfling, 2000)
In the space of probability measures P (Rd)

spherical symmetry = elliptical symmetry = central symmetry
= angular symmetry = halfspace symmetry.

No implication can be reversed.
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CENTRAL =—> ANGULAR —> HALFSPACE SYMMETRY

central symmetry <~ angular symmetry
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CENTRAL =—> ANGULAR —> HALFSPACE SYMMETRY

angular symmetry <4~ halfspace symmetry
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CENTRAL =—> ANGULAR —> HALFSPACE SYMMETRY

angular symmetry <4~ halfspace symmetry
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ANGULAR AND HALFSPACE SYMMETRY

Proposition (Zuo and Serfling, 2000, Theorem 2.6)
Suppose a random vector X is halfspace symmetric about a

unique point @ € RY, end either

1. X is absolutely continuous, or
2. Xis discrete and P(X =0) = 0.

Then X is angularly symmetric about 6.

Remark. The centre of halfspace symmetry of X ~ P € P (Rd)
Is a unique point, unless d = 1 and X has two medians.
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NON-SYMMETRIC DISTRIBUTION

Distribution which is

sup hD(x; P) = 4/9
XER?
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NON-SYMMETRIC DISTRIBUTION

Distribution which is not halfspace symmetric:

sup hD(x; P) = 4/9
XER?
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NON-SYMMETRIC DISTRIBUTION

Distribution which is not halfspace symmetric:

sup hD(x; P) = 4/9
XER?

0.0
-1.0 -0.5 0.0 0.5 1.0

27/169



DEPTH AND SYMMETRY

H-symmetry D A-symmetry D C-symmetry D E-symmetry D
S-symmetry
A desired property of the data depth:

2. maximality at the centre for symmetric distributions;

Proposition (Zuo and Serfling, 2000b)
For X ~ P € P (RY) symmetric about 6 € R?

hD (6; P) = sup hD(x; P).
xeR4
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DEPTH OF A MEDIAN

Testing for H-symmetry of P € P (R?) (Dutta et al, 2011)

Iy = (1/2 — sup hD(x; Pn)>
I

x€Rd
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MINIMUM DEPTH OF THE MEDIAN

ForPe P (Rd) uniform in the vertices of a simplex
(Donoho and Gasko, 1992)

sup hD(x;P) = (d +1)7' —— 0

XERd d—oo
.
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1.0
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MAXIMUM DEPTH OF THE MEDIAN

For X ~ P angularly symmetric about 6 € R?

(Rousseeuw and Struyf, 2004, Theorem 1)

sup hD(x; P) = hD(0, P) = 1/2 + P({6}) /2.
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PROBLEM: DEPTH OF THE MEDIAN

Problem (Donoho and Gasko, 1992; Dutta et al., 2011)
The depth of a median of an absolutely continuous
distribution in R? lies in the interval [1/(d + 1),1/2]. Can we

say more?
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DEPTH OF CONVEX BODIES

Population depth of a convex body K € K¢
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CALCULUS OF CONVEX BODIES

K+L={x+y:xeKyel}, I={ xeK}
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CALCULUS OF CONVEX BODIES

K+L={x+y:xeKyel}, I={ xeK}
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CALCULUS OF CONVEX BODIES

K+L={x+y:xeKyel}, I={ xeK}
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CALCULUS OF CONVEX BODIES

K+L={x+y:xeKyel}, I={M: xeK}
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THE BRUNN-MINKOWSKI INEQUALITY

K+L={x+y:xeKyel}, I={M: xeK}
Proposition (Brunn, 1887; Minkowski, 1896)

Let K,L  RY be convex bodies, vol (K) = vol (L) = 1. Then
vol ((K+ L)/2) > 1, with equality iff K is a translate of L.

» Function K — vol (K)/¢ is concave on 9.
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GRUNBAUM'’S INEQUALITY

Proposition (Griinbaum, 1960)
Let K € K9 vol (K) = 1. Then there is a point x € K such that

hD (x; K) > (C,in)d.

The bound is attained iff K is a simplex.
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GRUNBAUM'’S INEQUALITY

Proposition (Griinbaum, 1960)
Let K € K9 vol (K) = 1. Then there is a point x € K such that

hD (x; K) > (C,in)d.

The bound is attained iff K is a simplex.

» Grubaum proves a stronger statement:
The theorem holds with x = EK.

d
> limy_a (%) — exp(—1) ~ 0.37.
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BACKGROUND: WINTERNITZ THEOREM

Proposition (Winternitz, 1917)
For K € K% with centroid x € K

hD(x; K) > 4/9 = (22+1>2

This bound is attained iff K is a triangle.
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BACKGROUND: WINTERNITZ THEOREM

Arthur Winternitz (1893 - 1961)

» graduated (1917) and worked (1917 - 1939) at the German
University in Prague;
» the Winternitz theorem first appears in Blaschke (1923);
» independently rediscovered by
1935 Lavrentjev and Lyusternik;
1945 Neumann;
1951 Yaglom and Boltyanskii;
1955 Ehrhart;
1958 Newman;
» Theorem extended to d = 3 by Ehrhart (1956);
» For general d conjectured by Ehrhart (1955), proved
independently by Griinbaum (1960) and Hammer (1960).
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WINTERNITZ THEOREM FOR MEASURES

Version with P € P (Rd) (Donoho and Gasko, 1992):

1
sup hD(x; P) > ——.
2 O0P)2 3o

Previously noted by

» Neumann (1955), Yaglom and Boltyanskii (1951), Newman
(1958) for d = 2;

» Rado (1946), Birch (1959), Grinbaum (1960) for all d;

» Griinbaum (1960) shows that the bound is attained iff P is
uniform in the vertices of a simplex.
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WINTERNITZ THEOREM FOR CONCAVE MEASURES

Definition (Borell, 1974)
For k € [—o0, 00) we say that P € P (RY) is a k-concave

measure iff
P(A)P(B)'—* fork =0,
P(M + (1= X)B) > { min{P(A), P(B)} for k = —o0,
(AP(A)* + (1= A)P(B)%)* otherwise.

for all A,B c R? Borel and X € [0,1].
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PROPERTIES OF CONCAVE MEASURES

For a -concave measure P € P (RY):

» forany 7 < k Is P also 7-concave;

if K > 1, P must be a Dirac measure;

uniform measures on convex bodies are 1/d-concave;
if P has a density, then k < 1/d;

if k=0, Pis called log-concave;

if kK > —1, then P has a mean value;

YYYVYYVYY

if K = —o0, Pis called quasi-concave.
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WINTERNITZ THEOREM FOR CONCAVE MEASURES

Proposition (Bobkov, 2010, Theorem 5.2)
For k € (—1,1] and k-concave X ~ P € P (RY)

exp(—1 fork =0,
hD(EX; P) > ( 1)/R
(ﬁ) otherwise.

There are k-concave measures that attain this bound.
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WINTERNITZ THEOREM FOR CONCAVE MEASURES

Proposition (Bobkov, 2010, Theorem 5.2)
For k € (=1,1] and k-concave X ~ P € P (RY)

exp(—1 fork =0,
hD(EX; P) > ( 1)/,.@
(ﬁ) otherwise.

There are k-concave measures that attain this bound.

Can we say something about the case k < —1?
What about points other than EX?

For k = 0 the theorem was already known in economics.
(Caplin and Nalebuff, 1988)
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DEPTH IN ECONOMICS AND SOCIAL SCIENCES

Optimal shop location problem (Carrizosa, 1996)
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DEPTH IN ECONOMICS AND SOCIAL SCIENCES

Optimal shop location problem (Carrizosa, 1996)
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DEPTH IN ECONOMICS AND SOCIAL SCIENCES

Optimal shop location problem (Carrizosa, 1996)
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DEPTH IN ECONOMICS AND SOCIAL SCIENCES

Optimal shop location problem (Carrizosa, 1996)
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WINTERNITZ THEOREM

Proposition (Winternitz, 1917)
For K € K% with centroid x € K

hD(x; K) > 4/9 = (22+1>2

This bound is attained iff K is a triangle.
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WINTERNITZ MEASURE OF SYMMETRY

Definition (Winternitz, 1917; Blaschke, 1923)
For K e K9 x € K and a halfspace H € H(x), consider

vol (KN H)
vol (K) — vol (KN H)

f(H,x) =

and f(x) = min {f(H,x): H € H(x)}. The Winternitz measure of
symmetry of the body K is then given by

F(K) = max {f(x): x € K}.
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WINTERNITZ MEASURE OF SYMMETRY

Definition (Winternitz, 1917; Blaschke, 1923)
For K e K9 x € K and a halfspace H € H(x), consider

vol (KN H)

JH0) = 351 —vol (kA )

and f(x) = min {f(H,x): H € H(x)}. The Winternitz measure of
symmetry of the body K is then given by

F(K) = max {f(x): x € K}.

D K)
) =T =hox 0
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MEASURES OF SYMMETRY

Definition (Griinbaum, 1963)
A function s: K¢ — [0,1] is called a measure of symmetry iff

1. s(K) = 1iff K has a centre of (central) symmetry;
2. s(K) = s(T(K)) for every K € K¢ and every non-singular
affine transformation T: RY — RY:

3. sis continuous on K¢
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MINKOWSKI'S MEASURE OF SYMMETRY

ForKe K9, x e K

- dist(OH, 0H1)
HeH(x) dist(OH, OH,)’
where Hy and H, and parallel to H, and support K.

D(x; K) =

0.8
0.6
0.4
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MINKOWSKI'S MEASURE OF SYMMETRY

ForKe K9, x e K
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MINKOWSKI'S MEASURE OF SYMMETRY

ForKe K9, x e K

- dist(OH, 0H1)
HeH(x) dist(OH, OH,)’
where Hy and H, and parallel to H, and support K.

D(x; K) =

0.8
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KOVNER-BESICOVITCH MEASURE OF SYMMETRY

For K € K9, x € K (Besicovitch, 1951)

D(x; K) = vol (KN (2x — K)).

0.0 05 1.0

—Q.5

—1‘.0
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MACBEATH’'S CONSTRUCTION

For K € K9, x € K (Macbeath, 1951)

D(x; K) = vol (KN (2x — K)).
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D(x; K) = vol (KN (2x — K)).
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D(x; K) = vol (KN (2x — K)).
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MACBEATH’'S CONSTRUCTION

For K € K9, x € K (Macbeath, 1951)

D(x; K) = vol (KN (2x — K)).
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MACBEATH’'S CONSTRUCTION

For K € K9, x € K (Macbeath, 1951)

D(x; K) = vol (KN (2x — K)).
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MACBEATH’'S CONSTRUCTION

For K € K9, x € K (Macbeath, 1951)

D(x; K) = vol (KN (2x — K)).

1.‘0 1.‘5 2‘.0
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)
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LOCAL HALFSPACE DEPTH

Localization of hD (Paindaveine and Van Bever, 2013)

73/169



WINTERNITZ MEASURE OF SYMMETRY

ForKe K9, x e K

) vol (KN H
hD(x; K) = inf ¥
Her(x) vol (K)
1.0
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0.6 10
04
0.5
0.2
0.0 I 0.0
0.0 0.2 04 0.6 0.8 1.0 -1.0 -05 0.0 0.5 1.0

74169



MEASURES OF SYMMETRY

Definition (Griinbaum, 1963)
A function s: K¢ — [0,1] is called a measure of symmetry iff

» s(K) = 1iff K has a centre of (central) symmetry;
» s(K) = s(T(K)) for every K € K¢ and every non-singular
affine transformation T: RY — RY:

» s is continuous on K¢,
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FUNK’'S CHARACTERIZATION OF SYMMETRY

Proposition
A convex (or star) body K ¢ RY js centrally symmetric iff

sup hD(x; K) = 1/2.
xeK
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FUNK’'S CHARACTERIZATION OF SYMMETRY

Proposition
A convex (or star) body K ¢ RY js centrally symmetric iff

sup hD(x; K) = 1/2.
XeK
From the definition of the halfspace symmetry we get

Proposition . .
A convex body Is halfspace symmetric < it is centrally

symmetric.
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FUNK’'S CHARACTERIZATION OF SYMMETRY

Some history:

» for d =2 the problem is considered trivial;

» shown for d = 3, and conjectured for any d by Paul Funk
(1913);

» fully proved only by Schneider (1970) using functional
equations;

» newer proofs involve spherical integration (Falconer, 1983);
» extensions use spherical harmonics (Groemer, 1996);

» no elementary proof known for d > 3.
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FUNK’'S CHARACTERIZATION OF SYMMETRY

For K € K9 H-symmetry <= A-symmetry <= C-symmetry.
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ANGULAR AND HALFSPACE SYMMETRY

Proposition (Zuo and Serfling, 2000, Theorem 2.6)
Suppose a random vector X is halfspace symmetric about a

unique point @ € RY, end either

1. X is absolutely continuous, or
2. Xis discrete and P(X =0) = 0.

Then X is angularly symmetric about 6.

79/169



ANGULAR AND HALFSPACE SYMMETRY

Proposition (Zuo and Serfling, 2000, Theorem 2.6)
Suppose a random vector X is halfspace symmetric about a

unique point @ € RY, end either

1. X is absolutely continuous, or
2. Xis discrete and P(X =0) = 0.

Then X is angularly symmetric about 6.

For P uniform on K € K9 this implies Funk’s characterization!
(for convex (star) bodies angular symmetry = central
symmetry)
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PROOF | (ZUO AND SERFLING, 2000)

Proof only for d = 2, for the sake of simplicity (p. 73).
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ANGULAR AND HALFSPACE SYMMETRY I

Proposition (Dutta et al.,, 2011, Theorem 2) .
Suppose a random vector X is halfspace symmetric about

0 € RY. Then X is angularly symmetric about 6.
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ANGULAR AND HALFSPACE SYMMETRY I

Proposition (Dutta et al.,, 2011, Theorem 2) .
Suppose a random vector X is halfspace symmetric about

0 € RY. Then X is angularly symmetric about 6.

Proof II: For d = 2, general case “analogous”.
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ANGULAR AND HALFSPACE SYMMETRY lII|

Proposition (Rousseeuw and Ruts, 2003, Theorem 2)
If there is a point § € R? with

hD(0; P) =1/2+ P({6})/2,

then X ~ P is angularly symmetric about 6.
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IDEA OF THE PROOF (ROUSSEEUW AND STRUYF, 2004)

(i). The map x — (x1/ |4l X2/ [Xal, - - -, Xq/ |Xq|) takes H(0) to
halfspaces passing through hyperplanes
HE = {x e RY: xg = £1}.

\w

(ii). Apply the Cramér-Wold device (Cramér and Wold, 1936) in R~
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IDEA OF THE PROOF (ROUSSEEUW AND STRUYF, 2004)

(i). The map x — (x1/ |4l X2/ [Xal, - - -, Xq/ |Xq|) takes H(0) to
halfspaces passing through hyperplanes
HE = {x e RY: xg = £1}.
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P
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(ii). Apply the Cramér-Wold device (Cramér and Wold, 1936) in R~
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ANGULAR AND HALFSPACE SYMMETRY: PROOF IlI

Proof works for any d, using only the Cramér and Wold device.

Proposition (Cramér and Wold, 1936)
Any distribution X ~ P € P (RY) is uniquely determined by the

totality of its one-dimensional projections (X, u), u € S9=",
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ANGULAR AND HALFSPACE SYMMETRY: PROOF IlI

Proof works for any d, using only the Cramér and Wold device.

Proposition (Cramér and Wold, 1936)
Any distribution X ~ P € P (RY) is uniquely determined by the

totality of its one-dimensional projections (X, u), u € S9=",

First simple proof of the characterization.

85/169



WINTERNITZ MEASURE OF SYMMETRY: OTHER PROPERTIES

As collected by Griinbaum (1963):

» level sets of hD are convex and closed;
» for any K € K9 the halfspace median is unique;

Proposition (Blaschke, 1923; Griinbaum, 1963)
For any convex body K ¢ RY whose halfspace median is x € K,

there exists a collection of at least d + 1 halfspaces {H;} such
that |J; H; = RY x € N H,, and

P(H;) = hD(x; K) = suﬂsd hD(y; K).
ye

For each such H; the point x is the centroid of OH; N K.
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MINIMIZING HALFSPACE AND BARYCENTRIC CUT

Call H € H(x) a minimizing halfspace of P € P (RY) at x if
P(H) = hD(x; P),

and a hyperplane dH a barycentric cut of P at x if the centroid
of the cut (conditional expectation) of P by 9H is x.

0.5

0.0
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BARYCENTRIC CUTS OF A CONVEX BODY

Independently, it was proved in geometry/statistics:

1. For K € K9, the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).

2. Minimizing halfspaces of the median x of K € K¢ cover RY.
(Donoho and Gasko, 1992)

(Grinbaum, 1963)

For all K € K9 there exist (d 4 1) barycentric cuts through the
halfspace median x of P.
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HELLY'S THEOREM FOR DEPTH MEDIAN

i

Unsolved Problems
in Intuitive Mathematics Volume Il
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HELLY'S THEOREM FOR DEPTH MEDIAN

A8. Sections through the centroid of a convex body. Let K be a 3-
dimensional convex body with centroid (i.e., center of gravity) g. Is g neces-
sarily the centroid of at least four plane sections of K through g? Is it even the
centroid of seven such sections, as is the case if K is a tetrahedron? More
generally, if K is a d-dimensional convex body, is the centroid of K the centroid
ofd + lorevenof2? — 1ofthe(d — 1)-dimensional sections through g? When
d = 2 this is easily seen to be so—in this case g bisects three chords of K. This
question is due to Griinbaum and Loewner, see also the earlier paper by
Steinhaus.

A consequence of Helly’s theorem (see Section E1) is that some point of K
is the centroid of at least d + 1 sections by hyperplanes. What can be said
about the set of points of K enjoying this property? In the plane case Ceder
showed that this set is connected, but not necessarily convex. Chakerian &
Stein discuss other aspects of this problem.
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover R?
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover R?
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover R?
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BARYCENTRIC CUTS OF A CONVEX BODY

Minimizing halfspaces of the median x of K cover R?
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GRUNBAUM’S PROBLEM OPEN AGAIN

R? may be covered by less than (d + 1) minimizing halfspaces

(Patakova, Tancer, and Wagner, 2020)
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GRUNBAUM’S PROBLEM OPEN AGAIN

R? may be covered by less than (d + 1) minimizing halfspaces

(Patakova, Tancer, and Wagner, 2020)
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GRUNBAUM’S PROBLEM OPEN AGAIN

R? may be covered by less than (d + 1) minimizing halfspaces
(Patakova, Tancer, and Wagner, 2020)
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GRUNBAUM’S PROBLEM OPEN AGAIN

R? may be covered by less than (d + 1) minimizing halfspaces
(Patakova, Tancer, and Wagner, 2020)

Do (d + 1) barycentric cuts pass through the
halfspace median of all K € x9? 98/169



GRUNBAUM’S PROBLEM OPEN AGAIN

R? may be covered by less than (d + 1) minimizing halfspaces
(Patakova, Tancer, and Wagner, 2020)

Do (d + 1) barycentric cuts pass through some point

for all K e K97 99/169



UNIQUENESS OF THE DEPTH MEDIAN

As collected by Griinbaum (1963):

» level sets of hD are convex and closed;
» for any K € K9 the halfspace median is unique.
In statistics, we have

Proposition (Mizera and Volauf, 2002, Proposition 7)
Under conditions (S) and (C), the halfspace median of

P e P (RY) is unique.

The result is incomplete, the proof works only for d = 2.
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A MEASURE WITHOUT A UNIQUE MEDIAN

Take P € P (R?) the product of

uniform on a triangle in R? and Cauchy in R
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A MEASURE WITHOUT A UNIQUE MEDIAN

Take P € P (R?) the product of

uniform on a triangle in R? and Cauchy in R
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UNIQUENESS OF THE HALFSPACE MEDIAN

Proposition (Nagy, Pokorny, Laketa, 2021+)
A measure P € P (RY) has a unique median if

1. (C) is valid,

2. P has a density that is “almost continuous” on
hyperplanes, and

3. an integrability condition is satisfied (existence of
expectation).

Is there a (non-convex) body K ¢ R such that P
uniform on K does not have a unique median?
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CONCLUSIONS: DEPTH AND SYMMETRY

Main messages:

» symmetry of multivariate distributions is not an easy topic;

» Griinbaum (1960) knew about the depth before Tukey
(1975);

» depth of a median is a measure of symmetry;
» many related open problems.

» Not mentioned:

% Affine invariant points,
(Griinbaum, 1963; Meyer et al., 2015, 2015h)
% Dimensionality of depth regions.
(Pokorny et al., 2021+)
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QuUASI-CONCAVITY: FLOATING BODY




DEPTH: QUASI-CONCAVITY

hD is always quasi-concave, i.e. for each § € [0,1]

{x e RY: hD(x; P) > 5} is a convex set
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DEPTH: LEVEL SETS

It holds true that
{xeRd hD(x; P) >5} ({H € #: P(H) = 1 6}

2.0

0.5

0.0
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MOTIVATION: GRUNBAUM’S INEQUALITY

Proposition (Griinbaum, 1960)
Let K € RY be a convex body, vol (K) = 1. Then

hD (EK; K) > ()d
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FLOATING BODY

Definition (Dupin, 1822)
A convex body Kps) is called the floating body of K € Kd,if

d € [0,vol (K) /2] and each supporting hyperplane of K5 cuts
off a set of volume ¢ from K.

APPLICATIONS, PL.IL. STARTLI '.l‘]‘;.
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FLOATING BODY

Floating body of K for § = 0.2
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FLOATING BODY

Floating body of K for § = 0.2
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FLOATING BODY

Floating body of K for § = 0.2
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FLOATING BODY

Floating body of K for § = 0.2
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K for § = 0.1
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FLOATING BODY

Floating body of K for § = 0.1
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FLOATING BODY

Floating body of K for § = 0.1
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FLOATING BODY

of Kford =0.3
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FLOATING BODY

Floating body of K for § = 0.3
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FLOATING BODY

Floating body of K does not have to exist!
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FLOATING BODY

Floating body of K does not have to exist!
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FLOATING BODY

Floating body of K does not have to exist!
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FLOATING BODY

Floating body of K does not have to exist!
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AFFINE SURFACE AREA OF CONVEX BODIES

200 = [ w0 du(x),
oK
where

» Kis a convex body of class ¢,
» 0K is the topological boundary of K,
» k is the Gauss-Kronecker curvature of K, and

» 1 is the surface area measure of K
(d — 1-dimensional Hausdorff measure on 9K).
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AFFINE ISOPERIMETRIC INEQUALITY

Proposition (Blaschke, 1923)
It holds true that

Q (K)7*" < d9+k2 vol (K)4 "

with equality only for K ellipsoid. Here, k4 is the volume of the
unit ball in RY.

Ellipsoids have the largest affine surface area.
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CONVEX BODIES: BLASCHKE'S IDENTITY

Proposition (Blaschke, 1923) .
If for § small the floating body of K exists, then for

€ =2 (1g—/(d + )YV

i vol (K) — vol (K[(g])
§—0 §2/(d+1)
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AFFINE SURFACE AREA

. I(K)—vol(K;
Q(K) = lims_o Cd‘VO(;z/(\;:() )
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AFFINE SURFACE AREA

. I(K)—vol(K;
Q(K) = lims_o Cd‘VO(;z/(\;:() )
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AFFINE SURFACE AREA

. I(K)—vol(K;
Q(K) = lims_o Cd‘VO(;z/(\;:() )
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AFFINE SURFACE AREA

vol(K)—vol(K{5)

Q (K) = Iim5_>0 CGW
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CONVEX FLOATING BODY

Definition (Schiitt and Werner, 1990)
Let K € R? be a convex body and § € [0, vol (K) /2]. The convex

floating body of K associated with ¢ is given by

Ks=(){H € H: vol (KNH) >1-6}.
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CONVEX FLOATING BODY

Definition (Schiitt and Werner, 1990)
Let K € R? be a convex body and § € [0, vol (K) /2]. The convex

floating body of K associated with ¢ is given by

Ks=(){H € H: vol (KNH) >1-6}.
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CONVEX FLOATING BODY

Proposition (Schiitt and Werner, 1990)
Ks always exists. If Ki5) exists, then | Kis) = Ks. Further,

vol (K) — vol (K5)
§—0 §2/(d+1)
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CONVEX FLOATING BODY

Convex floating body of K always exists.
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BARANY-LARMAN’S MAPPING

Definition (Barany and Larman, 1988)
For K € K9 and x € K define

v(X) = min{vol (KNH) : x € H H e H}.

Similar functions were considered also earlier
(Neumann, 1945; Rado, 1946; Grinbaum, 1960; LeichtweiR, 1986...)

Rado (1946) defines v in R? for “densities” f(x,y): R? — [0, 00).

Fresen (2012) writes about “multivariate quantiles” given by v.

141/169



AFFINE SURFACE AREA

Proposition (Schiitt and Werner, 1990)
vol (K) — vol (K5)
52/(0+1)

20 =

For measures P € P (RY) one may be interested in
the behaviour of the function

81— P({hD(;; P) > 8}) = P({hD(+; P) < 8}

as 6 — 0. How to interpret that rate of convergence?
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GNEDENKO'S LAW OF LARGE NUMBERS

Proposition (Fresen, 2013)
letP e P (Rd) be log-concave, and let X4, ..., X, be a random

sample from P. Then co (X3,...,Xn) for n — oo “approximates”
the convex floating body of measure P corresponding to
d=1/n.

143/169



GNEDENKO'S LAW OF LARGE NUMBERS

Proposition (Fresen, 2013)
letP e P (Rd) be log-concave, and let X4, ..., X, be a random

sample from P. Then co (X3,...,Xn) for n — oo “approximates”
the convex floating body of measure P corresponding to
d=1/n.

» The depth determines the rate of convergence, and the
shape of the convex hull of random samples.

» Affine surface area describes the “tail complexity” of P.
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GNEDENKO'S LAW OF LARGE NUMBERS
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GNEDENKO'S LAW OF LARGE NUMBERS

hDy/n(P) ~ co(Xq,...,Xn) asn — oo
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GNEDENKO'S LAW OF LARGE NUMBERS

hDn(P) ~ co (Xa,...,Xn) forn =100
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GNEDENKO'S LAW OF LARGE NUMBERS
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GNEDENKO'S LAW OF LARGE NUMBERS
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DEPTH: ASYMPTOTIC NORMALITY

v/ (hD(x; Py) — hD(x; P)) is asymptotically normal

<= the contour of hD(+; P) is smooth in x

20

0.5

0.0

150/169



DEPTH: ASYMPTOTIC NORMALITY

v/ (hD(x; Py) — hD(x; P)) is asymptotically normal

<= the contour of hD(+; P) is smooth in x
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PROBLEM: SMOOTHNESS OF DEPTH

Elliptically symmetric distributions have elliptical depth
contours
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PROBLEM: SMOOTHNESS OF DEPTH

Problem (Massé and Theodorescu, 1994)

Does there exist a non-a-symmetric distribution with smooth
depth contours?
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PROBLEM: SMOOTHNESS OF DEPTH

Problem (Massé and Theodorescu, 1994)

Does there exist a non-a-symmetric distribution with smooth
depth contours?

Proposition (Meyer and Reisner, 1991)
Let K be a symmetric convex body. Then

» Ks is symmetric and strictly convex,

» if Kis smooth and strictly convex, then Ky is Cj.

= uniform distributions on smooth, symmetric, strictly
convex sets have
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PROBLEM: SMOOTHNESS OF DEPTH

Problem (Massé and Theodorescu, 1994)

Does there exist a non-a-symmetric distribution with smooth
depth contours?

Proposition (Meyer and Reisner, 1991)
Let K be a symmetric convex body. Then

» Ks is symmetric and strictly convex,

» if Kis smooth and strictly convex, then Ky is Cj.

= uniform distributions on smooth, symmetric, strictly
convex sets have

What can be said about general distributions
with well-behaved densities?
153/169



SMOOTHNESS: RECTANGLE

Unit ball in L*° — no smooth depth contours
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SMOOTHNESS: RECTANGLE

Unit ball in L*° — no smooth depth contours
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SMOOTHNESS: RECTANGLE

Unit ball in L'® — all depth contours smooth
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HOMOTHETY CONJECTURE

Problem (Schiitt and Werner, 1994)
Let ¢c,6 > 0 and K = cKs. Is then K an ellipsoid?
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HOMOTHETY CONJECTURE

Problem (Schiitt and Werner, 1994)
Let ¢c,6 > 0 and K = cKs. Is then K an ellipsoid?

» If K= cpKs, for 6, — 0 (Schitt and Werner, 1994).
» If Kis Cy and K = cKs for § < 6(K) (Stancu, 2006, 2009).
» If K= cKsford < §(K) (Werner and Ye, 2011).

In general still an
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Conjecture (Struyf and Rousseeuw, 1998)
Forany P,Q € P (RY), P # Q there exists x € R? such that

hD(x; P) # hD(x; Q).

Partial positive answers: This is true if

» P and Q are empirical (Koshevoy, 2002);
> %ﬁé&hﬁ%
» P and Q have smooth depth contours (Kong and Zuo, 2010).
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Proposition (Hassairi and Regaieg, 2008, Theorem 3.2)
Let P € P (RY) have a density that is smooth in the interior of

its connected support. Then forany H € H

supyeon D(X; P) if xp ¢ H,

P(H) =
1 — supyean hD(X; P) if xp € H,

where xp Is the halfspace median of P.

= P s characterized by its depth
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HASSAIRI AND REGAIEG'S CHARACTERIZATION

Not true — can be valid only for P halfspace symmetric.

supyeon D(X; P) if xp & H,

P(H) =
1 — supyean hD(x; P) if xp € H,

0.5
0.0 °

-05
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CHARACTERIZATION USING FLOATING BODIES

Definition _ 4
A convex body Py is called the floating body of a measure

PeP (Rd), if 6 € [0,1/2] and each supporting hyperplane of
Pis) cuts off a set of probability 4.
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CHARACTERIZATION THEOREM

Proposition (Nagy, Schiitt, Werner, 2017)
Let P € P (RY) satisfy (C), and let xp be the halfspace median

of P. Then the following are equivalent

» For each ¢ € (0,1/2) the floating body of P exists.
» P satisfies (S), and for each H € H

P(H) — supycgy hD(x; P) if xp ¢ H,
1 — supyegy hD(X; P) if xp € H.

In particular, P is characterized by its depth.
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CHARACTERIZATION THEOREM: SPECIAL CASES

Comments:

» For any symmetric, full-dimensional, k-concave
P e P (RY) with x > —1 the floating bodies P exist for all
d € (0,1/2); (Meyer and Reisner, 1997; Ball, 1991; Bobkov, 2010)

» Under (C):

P has smooth depth = (S) and Py exist for all §
—> P is H-symmetric
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Conjecture (Struyf and Rousseeuw, 1998)
Forany P,Q € P (RY), P # Q there exists x € RY such that

hD(x; P) # hD(x; Q).
Partial positive answers: This is true if

» Pand Q are empirical

(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021);
» if all Dupin’s floating bodies of P exist

(Hassairi, Regaieg, 2008; Kong, Zuo, 2010; Nagy, Schitt, Werner, 2019).

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
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DISTRIBUTION-BY-DEPTH CHARACTERIZATION

Conjecture (Struyf and Rousseeuw, 1998)
Forany P,Q € P (RY), P # Q there exists x € RY such that

hD(x; P) # hD(x; Q).
Partial positive answers: This is true if

» Pand Q are empirical

(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021);
» if all Dupin’s floating bodies of P exist

(Hassairi, Regaieg, 2008; Kong, Zuo, 2010; Nagy, Schitt, Werner, 2019).

Conjectured positive answer.

(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
Proposition (Nagy, 2021)

For any d > 1 there are two measures in P (R%) with the same

depth.
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DEPTH CHARACTERIZATION: PROOF |

Recall that P € P (RY) is a-symmetric (Eaton, 1981) if

(1) = /Rd exp (i (6,X) dP() = £ (|[t]l.)  forall t e RY

forsome : R — R. For X = (Xq,...,X4) ~ P, these measures
satisfy

oGuy L jull % forallues®.
For the depth of a-symmetric P

ueSd—1

= (xi< inf o)/l ) = (= )

for 8 the conjugate exponent to «, and F the c.d.f. of X;.

hD(GP) = inf P(u) < (ou)) = inf P(llulyr < (x,0)
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DEPTH CHARACTERIZATION: PROOF |

Fix v € (0,1) and take ¥, (t) = exp (— ||t]|}) for y < a < 1. Then

» Measure P, with characteristic function v, exists (Lévy,
1937);

» The conjugate index to ae < 11is 8 = oo; and
» For the characteristic function of X; with X ~ P, we have

Eexp(itX;) = exp(—Jt|”) forallteR,
i.e. F; does not depend on a.
All P, € P (RY) have the same depth

hD (x; Po) = F1 (= |Xll) forall x € RY.
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DEPTH CHARACTERIZATION: PROOF IlI

v = 1/2: the density of P, with o = 1 (left) and o = 1/2 (right).
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CONCLUSIONS: DEPTH AND FLOATING BODIES

What we know:

» Halfspace depth and the floating body are the same

concept.

» The depth describes the asymptotics of the convex hull of
samples.

» Depth distributions.

What we do not know:

» When are floating bodies of measures Dupin’s, or smooth?
» How many barycentric hyperplanes pass through
medians?
» How large can the median sets be?
» When does the depth characterize distributions?
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