Data Depth and its Place in Modern Mathematics Part I: Statistical Depth Function

Stanislav Nagy

PRIMUS/17/SCI/03: Advanced Geometric Methods in Statistics

KPMS Praha 2017

イロト イポト イヨト イヨト

Data Depth and Its Place in Modern Mathematics

PRIMUS/17/SCI/03 Advanced Geometric Methods in Statistics 2018–2020

- Multivariate statistics and convex geometry
- KPMS doc. Hlubinka, dr. Dvořák, S. Nagy;
 - KAM doc. Valtr;
 - MÚ prof. Rataj;
 - MFF and students.
- 3 4 presentations on Mondays, October 2017 January 2018

Part I: Statistical Data Depth (Introduction)

- Motivation: Order Statistics, Quantiles and Ranks
 - Point estimation
 - Data visualisation
 - L-estimation and testing
- 2 Halfspace Depth: Quantiles for Multivariate Data
 - The depth and its properties
 - Applications: non-parametric statistics in Euclidean spaces
 - Difficulties and open problems

3 General Data Depth

- Other depth measures
- Local depths

<**₩** > < **B** > <

Point estimation Data visualisation _-estimation and testing

Univariate Statistical Model

A random sample X_1, \ldots, X_n of **univariate** observations (X)

イロト イポト イヨト イヨト

Point estimation Data visualisation _-estimation and testing

Univariate Statistical Model

$X_1, \ldots, X_n \sim P \in \mathscr{P}(\mathbb{R})$ with a density

イロト イポト イヨト イヨト

3

Point estimation Data visualisation L-estimation and testing

Location Estimation: Mean

Mean $E X_1 = \int_{\mathbb{R}} x d P(x)$ estimated by $1/n \sum_{i=1}^n X_i$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Location Estimation: Median

Sample median: the middle-most observation $X_{(n/2)}$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.5) = \sup \{x \in \mathbb{R} : P((-\infty, x]) \le 0.5\}$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.25) = \sup \{x \in \mathbb{R} : P((-\infty, x]) \le 0.25\}$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.75) = \sup \{x \in \mathbb{R} : P((-\infty, x]) \le 0.75\}$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

IQR = q(0.75) - q(0.25)

イロト イポト イヨト イヨト

Boxplot

Quantile-based visualisation tool (Tukey, 1969)

Data visualisation

イロト イポト イヨト イヨト

Boxplot

Quantile-based visualisation tool (Tukey, 1969)

Data visualisation

イロト イポト イヨト イヨト

L-estimators

Point estimation Data visualisation L-estimation and testing

Central part of the data

イロト イポト イヨト イヨト

L-estimators

Point estimation Data visualisation L-estimation and testing

L-statistics: Functions of order statistics (trimmed mean)

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Scale Curve

 $s: [0, 1/2] \rightarrow [0, \infty): t \mapsto q(1-t) - q(t)$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Scale Curve

 $s: [0, 1/2] \rightarrow [0, \infty): t \mapsto q(1-t) - q(t)$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Outlier

Contaminate the dataset with an error $X_{n+1} = 1$

イロト イポト イヨト イヨト

Outlier

Mean and median of the contaminated data

L-estimation and testing

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Severe Outlier

Contaminate with $X_{n+1} = 10$

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Severe Outlier

Mean and median of the contaminated data

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Severe Outlier

Mean and median of the contaminated data

イロト イポト イヨト イヨト

Boxplots

Boxplot of the original data

L-estimation and testing

イロト イポト イヨト イヨト

Boxplots

Boxplot of the contaminated data

L-estimation and testing

イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Rank Tests: Two Sample Problem

Let $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_m \sim Q$ be independent univariate random samples (no ties). Test

 $H_0: P = Q$ against $H_1: P \neq Q$.

Wilcoxon's rank sum test (Wilcoxon, 1945):

- Pool the two samples into Z₁,..., Z_{n+m} and rank these observations (1 through n+m).
- Add up the ranks of those observations which came from the sample from *P*. Denote by *R*.
- Reject H_0 if R is either too small, or too large.

イロト イポト イヨト イヨト

3

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 5$$

R = 17 (range from 15 to 40), p-value 0.03

イロト イポト イヨト イヨト

3

Point estimation Data visualisation L-estimation and testing

イロト イポト イヨト イヨト

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

 $t\mapsto (q_X(t),q_Y(t))$

Point estimation Data visualisation L-estimation and testing

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

 $t\mapsto (q_X(t),q_Y(t))$

イロト イ理ト イヨト イヨト

L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 5$$

R = 17 (range from 15 to 40), p-value 0.03

Stanislav Nagy

Data Depth I

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 15$$

R = 143 (range from 120 to 345), p-value 0.00

A D > A A > A

Point estimation Data visualisation L-estimation and testing

Image: A matrix and a matrix

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(1,2), n = m = 15$$

R = 220 (range from 120 to 345), p-value 0.62

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim N(0,1), Y \sim N(0,16), n = m = 15$$

R = 242 (range from 120 to 345), p-value 0.71

Image: A matrix and a matrix

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim N(0,1), Y \sim N(0,16), n = m = 500$$

p-value 0.30

Point estimation Data visualisation L-estimation and testing

Summary: Ranks and Orders

In \mathbb{R} , rank and order statistics enable:

- effective data visualisation (Q-Q plot);
- outlier detection (boxplot);
- construction of robust estimators (L-statistics);
- non-parametric data analysis (rank tests).

All thanks to the linear ordering on the sample space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 General Data Depth
 Difficulties and open problems

Multivariate Data

How to order multivariate data?

イロト イポト イヨト イヨト

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 General Data Depth
 Difficulties and open problems

Multivariate Data

How to order multivariate data?

イロト イポト イヨト イヨト
Multivariate Data

How to order multivariate data?

Multivariate Data

How to order multivariate data?

イロト イポト イヨト イヨト

э

Multivariate Data

How to order multivariate data?

イロト イポト イヨト イヨト

э

Multivariate Data

How to order multivariate data?

Multivariate Data

How to order multivariate data?

Multivariate Data

How to order multivariate data?

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

 Halfspace Depth: Quantiles for Multivariate Data General Data Depth
 Applications: non-parametric statistics in Euclidean spaces

Multivariate Data

How to order multivariate data?

イロト イポト イヨト イヨト

э

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data	
General Data Depth	

Data Depth

For a random variable $X \sim P \in \mathscr{P}(\mathbb{R}^d)$, consider the **depth** of $x \in \mathbb{R}^d$ w.r.t. *P*

 $D \colon \mathbb{R}^d \times \mathscr{P}\left(\mathbb{R}^d\right) \to [0,1] \colon (x,P) \mapsto D(x,P).$

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data	
General Data Depth	

Data Depth

For a random variable $X \sim P \in \mathscr{P}(\mathbb{R}^d)$, consider the **depth** of $x \in \mathbb{R}^d$ w.r.t. *P*

 $D \colon \mathbb{R}^d \times \mathscr{P}\left(\mathbb{R}^d\right) \to [0,1] \colon (x,P) \mapsto D(x,P).$

• • • • • • • • •

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Halfspace Depth

Halfspace depth (Tukey, 1975) of an observation in \mathbb{R}^d

 $hD(x; P) = \inf_{H \in \mathcal{H}(x)} P(H).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Halfspace Depth

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Halfspace Depth

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Halfspace Depth

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Halfspace Depth

The depth and its properties

Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Brief History of *hD* (in Statistics)

- 1955 Idea with minimal halfspaces first used by Hodges;
- 1975 Tukey proposes *hD* as a visualisation tool;
- 1982 Donoho studies *hD* in his Ph.D. thesis;
- 1992 depth introduced in AoS (Donoho and Gasko, 1992);
- 1999 Rousseeuw and Ruts study *hD* in full generality;
- 2000 Zuo and Serfling provide a general framework for the depth.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

æ

Depth Region

 $hD_{\alpha}(P) = \{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\}$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

э

Depth Region

 $hD_{\alpha}(P) = \{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\}$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

э

Depth Contour

Topological boundary of $hD_{\alpha}(P)$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Halfspace Median

Point(s) at which the depth $hD(\cdot; P)$ is maximized over \mathbb{R}^d

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Elementary Properties

It holds true that

- hD(x; P) is well defined for any $x \in \mathbb{R}^d$ and $P \in \mathcal{P}(\mathbb{R}^d)$;
- $hD(x; P) \in [0, 1];$
- a halfspace median always exists;
- $hD(x, P) \le \alpha \text{ iff } \forall \beta > \alpha \exists H \in \mathcal{H}(x) \colon P(H) \le \beta;$
- $hD(x; P) = \inf_{u \in \mathbb{S}^{d-1}} hD(\langle x, u \rangle; P_{\langle X, u \rangle}).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Minimizing Halfspace

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The minimizing halfspace may not exist

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Minimizing Halfspace

The minimizing halfspace may not exist

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Assumption 1: Smoothness (S)

 $P(\partial H) = 0$ for each halfspace H

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Further Properties

For P that satisfies (S)

- $hD(x; P) \in [0, 1/2];$
- a minimizing halfspace exists at any $x \in \mathbb{R}^d$;
- if (C) is also true, the halfspace median is unique.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

3

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Maximality

If X is **symmetric** (i.e. $P_X = P_{-X}$), then

 $hD(0; P) = \sup_{x \in \mathbb{R}^d} hD(x; P).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Maximality

If X is **symmetric** (i.e. $P_X = P_{-X}$), then

 $hD(0; P) = \sup_{x \in \mathbb{R}^d} hD(x; P).$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

(Semi-)Continuity

Theorem (Mizera and Volauf, 2002)

For any
$$x_v \to x$$
 in \mathbb{R}^d and $P_v \xrightarrow{w}_{v \to \infty} P$ in $\mathscr{P}\left(\mathbb{R}^d\right)$

$$\limsup_{v\to\infty} hD(x_v; P_v) \le hD(x; P).$$

In particular,

$$\limsup_{v\to\infty} hD(x_v; P) \leq hD(x; P).$$

If P satisfies (S) then also

$$\lim_{v\to\infty}hD(x_v;P_v)=hD(x;P).$$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Robustness

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Robustness

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Robustness

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Robustness

The depth and its properties Applications: non-parametric statistics in Euclidean space Difficulties and open problems

イロト イポト イヨト イヨト

Sample Version Consistency

Theorem (Donoho and Gasko, 1992)

For any $\mathsf{P} \in \mathscr{P}\left(\mathbb{R}^{d}
ight)$ almost surely

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}^d}|hD(x;P_n)-hD(x;P)|=0.$$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Vanishing at Infinity

Theorem (Donoho and Gasko, 1992)

For any
$$\mathcal{P} \in \mathscr{P}\left(\mathbb{R}^{d}
ight)$$

 $\lim_{\|x\| \to \infty} h \mathcal{D}(x; \mathcal{P}) = 0.$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Properties of Depth Regions

For each $\alpha > 0$ it holds true that (Rousseeuw and Ruts, 1999)

- $hD_{\alpha}(P) = \bigcap \{H \in \mathcal{H} : P(H) > 1 \alpha\};$
- $hD_{\alpha}(P)$ is **closed**;
- $hD_{\alpha}(P)$ is **bounded**;
- $hD_{\alpha}(P)$ is **convex**.

 $hD(\cdot; P)$ is a **quasi-concave function** for any *P*.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\right\}$ is a convex set

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

-47 ▶

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d \colon hD(x; P) \geq \alpha\right\}$ is a convex set

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{ x \in \mathbb{R}^d \colon hD(x; P) \geq lpha
ight\}$ is a convex set

Stanislav Nagy

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{ x \in \mathbb{R}^d \colon hD(x; P) \geq lpha
ight\}$ is a convex set

Stanislav Nagy

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Properties of Depth Regions

Convex sets are equipped with the Hausdorff distance d_H .

Theorem (Dyckerhoff, 2017+)

Let (S) and (C) be true for P. Then the mapping

 $\alpha \mapsto hD_{\alpha}(P)$

is continuous. Further, for any α

$$d_H(hD_{\alpha}(P_n),hD_{\alpha}(P)) \xrightarrow[n \to \infty]{a.s.} 0.$$

The previous results of Zuo and Serfling (2000b) are not correct!

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Asymptotic Normality

$\sqrt{n}hD(x; P_n)$ is asymptotically normal

 $\iff hD(x; P)$ is realised by a single halfspace $H \in \mathcal{H}$ (Massé, 2004)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Asymptotic Normality

$\sqrt{n}hD(x; P_n)$ is asymptotically normal

 \iff the contour of $hD(\cdot; P)$ is **smooth** at x (Gijbels and Nagy, 2016)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Asymptotic Normality

$\sqrt{n}hD(x; P_n)$ is asymptotically normal

 \iff the contour of $hD(\cdot; P)$ is **smooth** at x (Gijbels and Nagy, 2016)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Multivariate Stable Distributions

For $p \in (0,2]$, $P \in \mathcal{P}(\mathbb{R}^d)$ is a *p*-stable distribution if $(X_1, \ldots, X_d) \sim P$ has independent components and for any $u_1, \ldots, u_d \in \mathbb{R}$ it holds that

 $\sum_{i=1}^d u_i X_i \sim \|u\|_p X_1.$

- for p = 2 we obtain the standard multivariate normal distribution;
- for p = 1 we obtain the standard multivariate Cauchy distribution;
- for other $p \in (0,2]$ there is **no explicit form** for the density of *P*.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Multivariate Stable Distributions

Theorem (Massé and Theodorescu, 1994)

Let P be p-stable. Set

$$q = egin{cases} p/(p-1) & \textit{if } p > 1, \ \infty & \textit{if } p \leq 1. \end{cases}$$

Then the depth regions $hD_{\alpha}(P)$ are the level sets of the norm $\|\cdot\|_{\alpha}$.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Multivariate Stable Distributions

Multivariate Cauchy distribution (p = 1)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Multivariate Stable Distributions

Multivariate stable distribution (p = 1.2)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Multivariate Stable Distributions

Multivariate normal distribution (p = 2)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Mixture of Normals

Mixture of two bivariate normal distributions

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Population Depth: Uniform Distribution on a Square

Uniform distribution on a simple convex body

The depth and its properties Applications: non-parametric statistics in Euclidean space Difficulties and open problems

イロト イポト イヨト イヨト

Problem: Smoothness of Depth Contours

Problem (Massé and Theodorescu, 1994)

Is there any non-elliptical distribution with smooth depth contours?

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Data Ordering

Depth induces a centre - outward ordering of points

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 Difficulties and open problems
 Difficulties and open problems

Halfspace Median

Point(s) that maximize the depth over \mathbb{R}^d

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

э

Bagplot: A Multivariate Boxplot

Central bag: 50% deepest observations (Rousseeuw et al., 1999)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Multivariate L-statistics

Depth-trimmed mean (Fraiman and Meloche, 1999)

$$\sum_{i=1}^{n} X_{i} \mathbb{I}(hD(X_{i}; P_{n}) \geq \alpha) / \sum_{i=1}^{n} \mathbb{I}(hD(X_{i}; P_{n}) \geq \alpha)$$

 Motivation:
 Order Statistics, Quantiles and Ranks
 The depth and its properties

 Halfspace Depth:
 Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 Difficulties and open problems
 Difficulties and open problems

Scale Curve

Volume of the depth region (Liu et al., 1999)

 $s\colon [0,1]\to [0,\infty)\colon \alpha\mapsto \lambda(\mathit{hD}_{\alpha}(\mathit{P}))$

A D > A A > A

3

Multivariate Rank Tests: Two Sample Problem

Let $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_m \sim Q$ be independent **multivariate** random samples. Test

 $H_0: P = Q$ against $H_1: P \neq Q$.

Wilcoxon's rank sum test (Liu and Singh, 1993):

- Pool the two samples into Z₁,..., Z_{n+m} and rank these observations by their depth (1 through n+m).
- Add up the ranks of those observations which came from the sample from *P*. Denote by *R*.
- Reject H_0 if R is either too small, or too large.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

э

D-D Plots: Multivariate Q-Q Plots

Replace quantiles by depth in Q-Q plots (Liu et al., 1999)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

D-D Plots: Multivariate Q-Q Plots

Replace quantiles by depth in Q-Q plots (Liu et al., 1999)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Classification

Classify a new observation into one of the groups (Li et al., 2012)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Classification

Classify a new observation into one of the groups (Li et al., 2012)

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

< □ > < 同 > < 回 > < 回 > < 回

D-D Plots: Multivariate Q-Q Plots

D-D plots with unequal scatters

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Computational Complexity of hD

- best known exact algorithms have complexity O(log(n)n^{d-1}) (Rousseeuw and Struyf, 1998);
- feasible computation only for $n \le 1000$ and $d \le 5$;
- approximations of *hD* (Dyckerhoff, 2004)

$$hD(x; P) = \inf_{u \in \mathbb{S}^{d-1}} hD(\langle x, u \rangle; P_{\langle X, u \rangle}) \approx \min_{j=1,...,N} hD(\langle x, U_j \rangle; P_{\langle X, U_j \rangle}).$$

• choice of the parameter N and the distribution of U (Nagy, 2017+).

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data General Data Depth Jufficulties and open problems

Ties

With increasing d the number of depth-ties increases

• • • • • • • • • • • •

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some Open Problems

Little is known about

- uniform distributional asymptotics;
- higher order asymptotics;
- detection of rough points;
- finite/large sample properties of depth-based tests and estimators;
- population depth and its properties.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Distribution-by-Depth Characterization

Conjecture

For any $P, Q \in \mathcal{P}(\mathbb{R}^d)$, $P \neq Q$ there exists $x \in \mathbb{R}^d$ such that $hD(x; P) \neq hD(x; Q)$.

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Distribution-by-Depth Characterization

Conjecture

For any $P, Q \in \mathcal{P}(\mathbb{R}^d)$, $P \neq Q$ there exists $x \in \mathbb{R}^d$ such that $hD(x; P) \neq hD(x; Q)$.

Partial positive answers:

- if P and Q are absolutely continuous with a compact support (Koshevoy, 2001)
- if *P* and *Q* are atomic (Koshevoy, 2002);
- if *P* and *Q* have smooth densities (Hassairi and Regaieg, 2008);
- if P and Q have smooth depth contours (Kong and Zuo, 2010).

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Distribution-by-Depth Characterization

Conjecture

For any $P, Q \in \mathcal{P}(\mathbb{R}^d)$, $P \neq Q$ there exists $x \in \mathbb{R}^d$ such that $hD(x; P) \neq hD(x; Q)$.

Partial positive answers:

- if P and Q are absolutely continuous with a compact support (Koshevoy, 2001)
- if *P* and *Q* are atomic (Koshevoy, 2002);
- if P and Q have smooth densities (Hassairi and Regaieg, 2008);
- if P and Q have smooth depth contours (Kong and Zuo, 2010).

Other depth measures Local depths

Statistical Data Depth

According to Zuo and Sefling (2000), **statistical data depth** is a function

 $D \colon \mathbb{R}^d \times \mathscr{P}(\mathbb{R}^d) \to [0,1] \colon (x,P) \mapsto D(x;P),$

that satisfies

- affine invariance;
- 2 maximality at the centre of symmetry for symmetric distributions;
- Monotonicity relative to the depth median;
- **vanishing** at infinity.

Other depth measures Local depths

Statistical Data Depth

According to Zuo and Sefling (2000), **statistical data depth** is a function

 $D: \mathbb{R}^d \times \mathscr{P}(\mathbb{R}^d) \to [0,1]: (x,P) \mapsto D(x;P),$

that satisfies

- affine invariance;
- 2 maximality at the centre of symmetry for symmetric distributions;
- Monotonicity relative to the depth median;
- **vanishing** at infinity.

Serfling (2006) requires in addition also

- upper semi-continuity as a function of x;
- **ontinuity** as a functional of *P*;
- **quasi-concavity** in *x*.

イロト イポト イヨト イヨト

Other depth measures Local depths

Simplicial Depth

Simplicial depth (Liu, 1988) of an observation in \mathbb{R}^d

 $sD(x; P) = P(x \in \mathbb{S}(X_1, \ldots, X_{d+1})).$

• • • • • • • • • • • •

Other depth measures Local depths

Simplicial Depth

$$sD(x;P_n) = \binom{n}{d+1}^{-1} \sum_{1 \leq X_{i_1} < \cdots < X_{i_{d+1}} \leq n} \mathbb{I}\left(x \in \mathbb{S}(X_{i_1},\ldots,X_{i_{d+1}})\right).$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Simplicial Depth

$$sD(x;P_n) = \binom{n}{d+1}^{-1} \sum_{1 \leq X_{i_1} < \cdots < X_{i_{d+1}} \leq n} \mathbb{I}\left(x \in \mathbb{S}(X_{i_1},\ldots,X_{i_{d+1}})\right).$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Simplicial Depth: Properties

Advantages:

- affine invariant;
- U-statistic (good statistical properties);
- robust median;
- vanishes at infinity.

But:

- not quasi-concave or monotonically decreasing;
- computationally expensive;
- population version difficult to study theoretically.

Other depth measures Local depths

Simplicial Volume Depth

Simplicial volume depth (Oja, 1983) of an observation in \mathbb{R}^d

 $svD(x; P) = (1 + E\lambda(S(x, X_1, ..., X_d)))^{-1}.$

• • • • • • • • • • • •

Other depth measures Local depths

Simplicial Volume Depth (Oja's Depth)

$$svD(x; P_n) = \left(1 + {\binom{n}{d}}^{-1} \sum_i \lambda(\mathbb{S}(x, X_{i_1}, \dots, X_{i_d}))\right)^{-1}$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Simplicial Volume Depth (Oja's Depth)

$$svD(x; P_n) = \left(1 + {\binom{n}{d}}^{-1} \sum_{i} \lambda(\mathbb{S}(x, X_{i_1}, \dots, X_{i_d}))\right)^{-1}$$

イロト イポト イヨト イヨト

3

Other depth measures Local depths

Spatial Depth

Spatial depth (Chaudhuri, 1996) of an observation in \mathbb{R}^d

$$spD(x,P) = 1 - \left\| \mathsf{E} \frac{x - X}{\|x - X\|} \right\|.$$

Other depth measures Local depths

Spatial Depth

$$spD(x; P) = 1 - \left\| \mathsf{E} \frac{x - X}{\|x - X\|} \right\|$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Spatial Depth

$$spD(x; P) = 1 - \left\| \mathsf{E} \frac{x - X}{\|x - X\|} \right\|$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Spatial Depth

$$spD(x; P) = 1 - \left\| \mathsf{E} \frac{x - X}{\|x - X\|} \right\|$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Spatial Depth

$$spD(x; P) = 1 - \left| E \frac{x - X}{\|x - X\|} \right|$$

イロト イポト イヨト イヨト

Other depth measures Local depths

Spatial Depth: Properties

Advantages:

- rotation invariant;
- maximized at the spatial median, i.e. a point x that minimizes

 $\mathsf{E}\left\|X-x\right\|;$

- robust median;
- vanishes at infinity;
- very fast computation (O(n));
- works also in high-dimensional spaces.

But:

- not affine invariant;
- **not quasi-concave** or monotonically decreasing.

イロト イポト イヨト イヨト

Other depth measures Local depths

Mahalanobis Depth

Mahalanobis depth (Mahalanobis, 1936) of an observation in \mathbb{R}^d

$$mD(x; P) = (1 + (x - EX)^{T} (Var X)^{-1} (x - EX))^{-1}$$

A D > A A > A

Other depth measures Local depths

Mahalanobis Depth

$mD(x; P) \sim$ Mahalanobis distance from EX

イロト イポト イヨト イヨト

Other depth measures Local depths

Mahalanobis Depth

$mD(x; P) \sim$ Mahalanobis distance from EX

イロト イポト イヨト イヨト

Other depth measures Local depths

Mahalanobis Depth

$mD(x; P) \sim$ Mahalanobis distance from EX

• • • • • • • • • • • •

Other depth measures Local depths

Mahalanobis Depth

Mahalanobis depth (Mahalanobis, 1936) of an observation in \mathbb{R}^d

$$mD(x; P) = (1 + (x - EX)^{T} (Var X)^{-1} (x - EX))^{-1}$$

э

Other depth measures Local depths

Mahalanobis Depth: Properties

Disadvantages:

- not always defined (not entirely non-parametric);
- maximized at the mean (\implies not robust);
- rigid contours (concentric ellipses of the same shape).

Not really a depth.

Other depth measures Local depths

Unimodality / Quasi-Concavity

Proper depth is intended to be unimodal and quasi-concave

Other depth measures Local depths

Unimodality / Quasi-Concavity

Proper depth is intended to be unimodal and quasi-concave

Other depth measures Local depths

Local Depths

Relaxation of unimodality leads to local depths

イロト イポト イヨト イヨト

Other depth measures Local depths

Likelihood Depth

Multivariate density estimator (Fraiman and Meloche, 1999)

イロト イポト イヨト イヨト

Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

Other depth measures Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

• • • • • • • • • • • •

э

Other depth measures Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

• • • • • • • • • • • •

э

Other depth measures Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

Other depth measures Local depths

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

Other depth measures Local depths

Local Halfspace Depth

Other approaches exist (Kotík and Hlubinka, 2017)

Other depth measures Local depths

Further Extensions

Depths for more exotic data — variants of the halfspace and simplicial depth:

- for directional data (data in \mathbb{S}^{d-1}) (Liu and Singh, 1992);
- for data on graphs and trees (Small, 1997);
- for infinite-dimensional (functional) data (Fraiman and Muniz, 2001);
- for general metric spaces (Carrizosa, 1996);
- in regression problems (Rousseeuw and Hubert, 1999);
- ...

Many proposals, many tests, many simulations. **No sufficient** comprehensive theory.

Other depth measures Local depths

Conclusions

Data depth is

- easy to understand (i.e. extremely popular);
- promises many applications; but also
- computationally intensive;
- with isolated and underdeveloped theory.

In Parts II and III:

Connections of depth to mathematics outside statistics.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Other depth measures Local depths

Selected Literature

- David L. Donoho and Miriam Gasko. Breakdown properties of location estimates based on halfspace depth and projected outlyingness. <u>Ann. Statist.</u>, 20(4):1803–1827, 1992.
- Regina Y. Liu. On a notion of simplicial depth. Proc. Natl. Acad. Sci. U.S.A., 85(6):1732–1734, 1988.

Regina Y. Liu, Jesse M. Parelius, and Kesar Singh. Multivariate analysis by data depth: descriptive statistics, graphics and inference. <u>Ann. Statist.</u>, 27(3):783–858, 1999.

Peter J. Rousseeuw and Ida Ruts. The depth function of a population distribution. <u>Metrika</u>, 49(3):213–244, 1999.

John W. Tukey. Mathematics and the picturing of data. In <u>Proceedings of the International</u> <u>Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531. Canad.</u> Math. Congress, Montreal, Que., 1975.

Yijun Zuo and Robert Serfling. General notions of statistical depth function. <u>Ann. Statist.</u>, 28(2):461–482, 2000.

Yijun Zuo and Robert Serfling. Structural properties and convergence results for contours of sample statistical depth functions. <u>Ann. Statist.</u>, 28(2):483–499, 2000.