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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Univariate Statistical Model

A random sample X1, . . . ,Xn of univariate observations (✕)
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Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Univariate Statistical Model

X1, . . . ,Xn ∼ P ∈ P (R) with a density
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Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Location Estimation: Mean

Mean EX1 =
∫
R

x dP(x) estimated by 1/n ∑n
i=1 Xi
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Location Estimation: Median

Sample median : the middle-most observation X(n/2)

Observations

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Observations

D
e

n
s
it
y

Stanislav Nagy Data Depth I
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Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Quantiles for Univariate Data

q(0.5) = sup{x ∈ R : P((−∞,x])≤ 0.5}
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Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Quantiles for Univariate Data

q(0.25) = sup{x ∈ R : P((−∞,x])≤ 0.25}

Observations

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Observations

D
e

n
s
it
y

Stanislav Nagy Data Depth I
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Quantiles for Univariate Data

q(0.75) = sup{x ∈ R : P((−∞,x])≤ 0.75}
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Quantiles for Univariate Data

IQR = q(0.75)−q(0.25)
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Boxplot

Quantile-based visualisation tool (Tukey, 1969)

Observations
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Boxplot

Quantile-based visualisation tool (Tukey, 1969)
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

L-estimators

Central part of the data

Observations
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

L-estimators

L-statistics : Functions of order statistics (trimmed mean)

Observations
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Scale Curve

s : [0,1/2]→ [0,∞) : t 7→ q(1− t)−q(t)
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Scale Curve

s : [0,1/2]→ [0,∞) : t 7→ q(1− t)−q(t)
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Outlier

Contaminate the dataset with an error Xn+1 = 1

Observations
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Outlier

Mean and median of the contaminated data

Observations
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Severe Outlier

Contaminate with Xn+1 = 10

Observations
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General Data Depth

Point estimation
Data visualisation
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Severe Outlier

Mean and median of the contaminated data
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Boxplots

Boxplot of the original data

Observations
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Boxplots

Boxplot of the contaminated data

Observations
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Rank Tests: Two Sample Problem

Let X1, . . . ,Xn ∼ P and Y1, . . . ,Ym ∼ Q be independent univariate
random samples (no ties). Test

H0 : P = Q against H1 : P 6= Q.

Wilcoxon’s rank sum test (Wilcoxon, 1945):

Pool the two samples into Z1, . . . ,Zn+m and rank these
observations (1 through n+m).

Add up the ranks of those observations which came from the
sample from P. Denote by R.

Reject H0 if R is either too small, or too large.
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 5

R = 17 (range from 15 to 40), p-value 0.03
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

t 7→ (qX (t),qY (t))
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General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

t 7→ (qX (t),qY (t))
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 5

R = 17 (range from 15 to 40), p-value 0.03
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 15

R = 143 (range from 120 to 345), p-value 0.00
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(1,2),n = m = 15

R = 220 (range from 120 to 345), p-value 0.62
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ N(0,1),Y ∼ N(0,16),n = m = 15

R = 242 (range from 120 to 345), p-value 0.71
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ N(0,1),Y ∼ N(0,16),n = m = 500

p-value 0.30
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Point estimation
Data visualisation
L-estimation and testing

Summary: Ranks and Orders

In R, rank and order statistics enable:

effective data visualisation (Q-Q plot);

outlier detection (boxplot);

construction of robust estimators (L-statistics);

non-parametric data analysis (rank tests).

All thanks to the linear ordering on the sample space.
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?
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2
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Data Depth

For a random variable X ∼ P ∈ P
(

R
d
)

, consider the depth of x ∈ R
d

w.r.t. P
D : Rd ×P

(

R
d
)

→ [0,1] : (x ,P) 7→ D(x ,P).

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

0 2 4 6 8

0
1

2
3

4
5

6

Stanislav Nagy Data Depth I



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Data Depth

For a random variable X ∼ P ∈ P
(

R
d
)

, consider the depth of x ∈ R
d

w.r.t. P
D : Rd ×P

(

R
d
)

→ [0,1] : (x ,P) 7→ D(x ,P).

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

0 2 4 6 8

0
1

2
3

4
5

6

Stanislav Nagy Data Depth I



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Halfspace Depth

Halfspace depth (Tukey, 1975) of an observation in R
d

hD(x ;P) = inf
H∈H (x)

P (H) .
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General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Halfspace Depth

hD (x ;Pn) = min
# of observations in a halfspace that contains x

n
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Brief History of hD (in Statistics)

1955 Idea with minimal halfspaces first used by Hodges;

1975 Tukey proposes hD as a visualisation tool;

1982 Donoho studies hD in his Ph.D. thesis;

1992 depth introduced in AoS (Donoho and Gasko, 1992);

1999 Rousseeuw and Ruts study hD in full generality;

2000 Zuo and Serfling provide a general framework for the depth.
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Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Depth Region

hDα(P) = {x ∈ R
d : hD(x ;P)≥ α}
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Depth Contour

Topological boundary of hDα(P)
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Halfspace Median

Point(s) at which the depth hD(·;P) is maximized over Rd
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth
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Elementary Properties

It holds true that

hD(x ;P) is well defined for any x ∈ R
d and P ∈ P

(

R
d
)

;

hD(x ;P) ∈ [0,1];

a halfspace median always exists ;

hD(x ,P)≤ α iff ∀β > α ∃H ∈ H (x) : P(H)≤ β;

hD(x ;P) = infu∈Sd−1 hD(〈x ,u〉 ;P〈X ,u〉).
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Minimizing Halfspace

The minimizing halfspace may not exist
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Assumption 1: Smoothness (S)

P(∂H) = 0 for each halfspace H
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Assumption 2: Contiguous Support (C)

The mass of P cannot be divided by a slab of zero probability (Mizera

and Volauf, 2002)
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Further Properties

For P that satisfies (S)

hD(x ;P) ∈ [0,1/2];

a minimizing halfspace exists at any x ∈ R
d ;

if (C) is also true, the halfspace median is unique .
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Affine Invariance

For any A ∈ R
d×d non-singular and b ∈ R

d

hD(x ;PX ) = hD(Ax +b;PAX+b).
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Maximality

If X is symmetric (i.e. PX = P−X ), then

hD(0;P) = sup
x∈Rd

hD(x ;P).
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(Semi-)Continuity

Theorem (Mizera and Volauf, 2002)

For any xν → x in R
d and Pν

w−−−→
ν→∞

P in P
(

R
d
)

limsupν→∞hD(xν;Pν)≤ hD(x ;P).

In particular,
limsupν→∞hD(xν;P)≤ hD(x ;P).

If P satisfies (S) then also

lim
ν→∞

hD(xν;Pν) = hD(x ;P).
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Robustness

Halfspace median is a robust estimator
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Sample Version Consistency

Theorem (Donoho and Gasko, 1992)

For any P ∈ P
(

R
d
)

almost surely

lim
n→∞

sup
x∈Rd

|hD(x ;Pn)−hD(x ;P)|= 0.
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Vanishing at Infinity

Theorem (Donoho and Gasko, 1992)

For any P ∈ P
(

R
d
)

lim
‖x‖→∞

hD(x ;P) = 0.
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Properties of Depth Regions

For each α > 0 it holds true that (Rousseeuw and Ruts, 1999)

hDα(P) =
⋂{H ∈ H : P(H)> 1−α};

hDα(P) is closed ;

hDα(P) is bounded ;

hDα(P) is convex .

hD(·;P) is a quasi-concave function for any P.
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Quasi-Concavity

hD is always quasi-concave , i.e. for each α ∈ [0,1]

{

x ∈ R
d : hD(x ;P)≥ α

}

is a convex set
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Consistency of Depth Regions

Consider the mapping

α 7→
{

x ∈ R
d : hD(x ;P)≥ α

}
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Properties of Depth Regions

Convex sets are equipped with the Hausdorff distance dH .

Theorem (Dyckerhoff, 2017+)

Let (S) and (C) be true for P. Then the mapping

α 7→ hDα(P)

is continuous. Further, for any α

dH (hDα(Pn),hDα(P))
a.s.−−−→

n→∞
0.

The previous results of Zuo and Serfling (2000b) are not correct!

Stanislav Nagy Data Depth I



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth
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Asymptotic Normality

√
n hD(x ;Pn) is asymptotically normal

⇐⇒ hD(x ;P) is realised by a single halfspace H ∈ H (Massé, 2004)
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Asymptotic Normality

√
n hD(x ;Pn) is asymptotically normal

⇐⇒ the contour of hD(·;P) is smooth at x (Gijbels and Nagy, 2016)
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Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours
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Population Depth: Multivariate Stable Distributions

For p ∈ (0,2], P ∈ P
(

R
d
)

is a p-stable distribution if
(X1, . . . ,Xd)∼ P has independent components and for any
u1, . . . ,ud ∈ R it holds that

d

∑
i=1

uiXi ∼ ‖u‖p X1.

for p = 2 we obtain the standard multivariate normal distribution;

for p = 1 we obtain the standard multivariate Cauchy
distribution;

for other p ∈ (0,2] there is no explicit form for the density of P.
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Population Depth: Multivariate Stable Distributions

Theorem (Massé and Theodorescu, 1994)

Let P be p-stable. Set

q =

{

p/(p−1) if p > 1,

∞ if p ≤ 1.

Then the depth regions hDα(P) are the level sets of the norm ‖·‖q .
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Population Depth: Multivariate Stable Distributions

Multivariate Cauchy distribution (p = 1)
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Population Depth: Multivariate Stable Distributions

Multivariate stable distribution (p = 1.2)
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Population Depth: Multivariate Stable Distributions

Multivariate normal distribution (p = 2)
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Population Depth: Mixture of Normals

Mixture of two bivariate normal distributions
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Population Depth: Uniform Distribution on a Square

Uniform distribution on a simple convex body
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Problem: Smoothness of Depth Contours

Problem (Massé and Theodorescu, 1994)

Is there any non-elliptical distribution with smooth depth contours?
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Data Ordering

Depth induces a centre - outward ordering of points
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Halfspace Median

Point(s) that maximize the depth over Rd
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Bagplot: A Multivariate Boxplot

Central bag: 50% deepest observations (Rousseeuw et al., 1999)
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Multivariate L-statistics

Depth-trimmed mean (Fraiman and Meloche, 1999)

n

∑
i=1

Xi I(hD(Xi ;Pn)≥ α)/
n

∑
i=1

I(hD(Xi ;Pn)≥ α)
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Scale Curve

Volume of the depth region (Liu et al., 1999)

s : [0,1]→ [0,∞) : α 7→ λ(hDα(P))
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Multivariate Rank Tests: Two Sample Problem

Let X1, . . . ,Xn ∼ P and Y1, . . . ,Ym ∼ Q be independent multivariate
random samples. Test

H0 : P = Q against H1 : P 6= Q.

Wilcoxon’s rank sum test (Liu and Singh, 1993):

Pool the two samples into Z1, . . . ,Zn+m and rank these
observations by their depth (1 through n+m).

Add up the ranks of those observations which came from the
sample from P. Denote by R.

Reject H0 if R is either too small, or too large.
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D-D Plots: Multivariate Q-Q Plots

Replace quantiles by depth in Q-Q plots (Liu et al., 1999)
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Classification

Classify a new observation into one of the groups (Li et al., 2012)
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D-D Plots: Multivariate Q-Q Plots

D-D plots with unequal scatters
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General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Computational Complexity of hD

best known exact algorithms have complexity O(log(n)nd−1)
(Rousseeuw and Struyf, 1998);

feasible computation only for n ≤ 1000 and d ≤ 5;

approximations of hD (Dyckerhoff, 2004)

hD(x ;P) = inf
u∈Sd−1

hD(〈x ,u〉 ;P〈X ,u〉)≈ min
j=1,...,N

hD(〈x ,Uj〉 ;P〈X ,Uj 〉).

choice of the parameter N and the distribution of U (Nagy, 2017+).
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Difficulties and open problems

Ties

With increasing d the number of depth-ties increases
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Motivation: Order Statistics, Quantiles and Ranks
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General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Some Open Problems

Little is known about

uniform distributional asymptotics;

higher order asymptotics;

detection of rough points ;

finite/large sample properties of depth-based tests and
estimators;

population depth and its properties.
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General Data Depth

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Distribution-by-Depth Characterization

Conjecture

For any P,Q ∈ P
(

R
d
)

, P 6= Q there exists x ∈ R
d such that

hD(x ;P) 6= hD(x ;Q).
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Distribution-by-Depth Characterization

Conjecture

For any P,Q ∈ P
(

R
d
)

, P 6= Q there exists x ∈ R
d such that

hD(x ;P) 6= hD(x ;Q).

Partial positive answers:

if P and Q are absolutely continuous with a compact support
(Koshevoy, 2001)

if P and Q are atomic (Koshevoy, 2002);

if P and Q have smooth densities (Hassairi and Regaieg, 2008);

if P and Q have smooth depth contours (Kong and Zuo, 2010).
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Other depth measures
Local depths

Statistical Data Depth

According to Zuo and Sefling (2000), statistical data depth is a
function

D : Rd ×P
(

R
d
)

→ [0,1] : (x ,P) 7→ D(x ;P),

that satisfies

1 affine invariance ;

2 maximality at the centre of symmetry for symmetric distributions;

3 monotonicity relative to the depth median;

4 vanishing at infinity.
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General Data Depth

Other depth measures
Local depths

Statistical Data Depth

According to Zuo and Sefling (2000), statistical data depth is a
function

D : Rd ×P
(

R
d
)

→ [0,1] : (x ,P) 7→ D(x ;P),

that satisfies

1 affine invariance ;

2 maximality at the centre of symmetry for symmetric distributions;

3 monotonicity relative to the depth median;

4 vanishing at infinity.

Serfling (2006) requires in addition also

5 upper semi-continuity as a function of x ;

6 continuity as a functional of P;

7 quasi-concavity in x .
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General Data Depth

Other depth measures
Local depths

Simplicial Depth

Simplicial depth (Liu, 1988) of an observation in R
d

sD(x ;P) = P(x ∈ S(X1, . . . ,Xd+1)) .
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Simplicial Depth

sD(x ;Pn) =

(

n

d +1

)−1

∑
1≤Xi1<···<Xid+1≤n

I
(

x ∈ S(Xi1 , . . . ,Xid+1)
)

.
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Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

General Data Depth

Other depth measures
Local depths

Simplicial Depth: Properties

Advantages:

affine invariant ;

U-statistic (good statistical properties);

robust median;

vanishes at infinity.

But:

not quasi-concave or monotonically decreasing;

computationally expensive;

population version difficult to study theoretically.
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General Data Depth

Other depth measures
Local depths

Simplicial Volume Depth

Simplicial volume depth (Oja, 1983) of an observation in R
d

svD(x ;P) = (1+Eλ(S(x ,X1, . . . ,Xd)))
−1 .
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Simplicial Volume Depth (Oja’s Depth)

svD (x ;Pn) =

(
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(
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General Data Depth

Other depth measures
Local depths

Spatial Depth

Spatial depth (Chaudhuri, 1996) of an observation in R
d

spD(x ,P) = 1−
∥

∥

∥

∥

E
x −X

‖x −X‖

∥

∥

∥

∥

.
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General Data Depth

Other depth measures
Local depths

Spatial Depth: Properties

Advantages:

rotation invariant ;

maximized at the spatial median , i.e. a point x that minimizes

E‖X − x‖ ;

robust median;

vanishes at infinity;

very fast computation (O(n));

works also in high-dimensional spaces.

But:

not affine invariant ;

not quasi-concave or monotonically decreasing.
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General Data Depth

Other depth measures
Local depths

Mahalanobis Depth

Mahalanobis depth (Mahalanobis, 1936) of an observation in R
d

mD(x ;P) =
(

1+(x −EX)T (VarX)−1 (x −EX)
)−1

.
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Mahalanobis Depth

mD (x ;P)∼ Mahalanobis distance from EX
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General Data Depth

Other depth measures
Local depths

Mahalanobis Depth: Properties

Disadvantages:

not always defined (not entirely non-parametric);

maximized at the mean ( =⇒ not robust);

rigid contours (concentric ellipses of the same shape).

Not really a depth.
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Local depths

Unimodality / Quasi-Concavity

Proper depth is intended to be unimodal and quasi-concave
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Local Depths

Relaxation of unimodality leads to local depths
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Likelihood Depth

Multivariate density estimator (Fraiman and Meloche, 1999)
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Local Halfspace Depth

Localization of hD (Paindaveine and Van Bever, 2013)
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Local Halfspace Depth

Other approaches exist (Kotík and Hlubinka, 2017)
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Further Extensions

Depths for more exotic data — variants of the halfspace and
simplicial depth :

for directional data (data in S
d−1) (Liu and Singh, 1992);

for data on graphs and trees (Small, 1997);

for infinite-dimensional (functional) data (Fraiman and Muniz, 2001);

for general metric spaces (Carrizosa, 1996);

in regression problems (Rousseeuw and Hubert, 1999);

. . .

Many proposals, many tests, many simulations. No sufficient
comprehensive theory.
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Local depths

Conclusions

Data depth is

easy to understand (i.e. extremely popular);

promises many applications ; but also

computationally intensive;

with isolated and underdeveloped theory .

In Parts II and III:

Connections of depth to mathematics outside statistics .
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