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Relationship between ADH and pmi

@ thatch = hatching time

@ tyisc = discovery time of corpse

° pmi = tdisc — thatch

tdisc
ADH = / T(t)dt — pmi X Tijimit

thatch 0

t (hours)

Interpretation
ADH = amount of thermal energy available to the larva
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Growth profile approach

pmi ~ oldest larva (at the most advanced developmental stage)

To determine pmi one has to

@ estimate the length of the oldest larva

@ estimate the growth profile
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Available data

Crime scene data

Investigators

@ collect larvae from the body at the most advanced
developmental stage

< larval lengths Y7, Y3,..., Y,

@ record "continuously” temperatures at the crime scene

Additional data

@ temperatures from the closest wheather station
<> recover past temperatures at the crime scene

@ Experimental developmental larvae data
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Available data

Experimental developmental larvae data depends on temperature
(blowfly calliphora vicina)
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Available data

Temperatures profile at crime scene
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Statistical challenge ?

Constant temperature growth data . .
Temperature profile at crime scene

5°C

M.!:"*wi .4'“: A ]

£ 1 !
E= + =l |
S= &8 |
| )
5 £
c 2avc - 777c o g A
a v E
2 Rt P E
B r f BEFORE ' E
B T T T TR I T T
hours time since body discovery (hours)
Varying temperature growth profile
ol
B
= % = ?
?
5

time (hours)



Our approach
©000000e

Four-steps estimating procedure

@ Smoothing experimental developmental data



Our approach
©000000e

Four-steps estimating procedure

@ Smoothing experimental developmental data

@ Decompose growth profiles into rescaled growth shape and
warping functions



Our approach
©000000e

Four-steps estimating procedure

@ Smoothing experimental developmental data

@ Decompose growth profiles into rescaled growth shape and
warping functions

© Estimate constant temperature growth profile and its
derivative at any temperature



Our approach
©000000e

Four-steps estimating procedure

@ Smoothing experimental developmental data

@ Decompose growth profiles into rescaled growth shape and
warping functions

© Estimate constant temperature growth profile and its
derivative at any temperature

@ Build the varying temperature growth profile from a dynamic
model and estimate pmi
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Step 1 : smoothing experimental developmental data

L7, (t) := benchmark growth profile at temperature T} and time
after hatching t

Nonparametric regression model

Yiie = LTk(t;()+€kj£ (k:1,...7K,j:1,...7nk,€:1,...,Nkj

<

Local linear regression
2
Zwk {ij—a—b(tf‘—t)} K{hL‘l(tf—t)}

with Yy, = ’ij >0 Yige and wi(tf) = Nig/ 3=, Nig

{Ln(0), 7 (0} = argmin Q(a, b)
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Step 1 : smoothing experimental developmental data

Notations

;
1 1 1
°Xt_<t1k—t th—t .- t,’fk—t>
A k k
o K, := diag (wk(tl)Kl,...,wk(tnk)K,,k) where
K=K {h (=0} G=1,...,m)

o YK — (Vkl,...,vknk)T
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Step 1 : smoothing experimental developmental data

Notations

;
° X = (tf—t th—t .- t,’fk—t>
A k k
o K, := diag (wk(tl)Kl,...,wk(tnk)K,,k) where
K=K {h (=0} G=1,...,m)
— — — \T
] Yk = (Ykla"'7yknk)
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Step 1 : smoothing experimental developmental data

benchmark growth profiles ZTI, . ,ZTK
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Step 1 : asymptotics

(H1) VT, Lt four-times continuously differentiable with a nonnull
second derivative in the neighbourhood of the maximum
length time

H2) n:=infng : n— oo, hy — 0 with n, n h® — oo with n
n L

Under (H1)-(H2) + standard ones, for any Ty € {T1,..., Tk}

.-

L'y, — L
Ty Tk ~

= O(h}) + 0p {(nh}) "}

= O(h}) + 0p { (nh) 13}
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bench. shape profiles bench. warping functions
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Step 2 : benchmark warping functions (landmark

registration)

Warping function assumptions

Q wr,...,wr, align
e hatching time tpatch = 0
e time of maximum length t,.x
o pupation time t,,, (largest time after hatching)

@ wr,,...,wr, are strictly increasing quadratic polynomial

For a given a € (0,1), wr,, wr,, ... are strictly increasing
quadratic polynomial such that

WT]_(O) =0, WTl(tr%ax) = G, WTl(t;up) =1

WT2(0) =0, WT2(tr2nax) = q, WTk(tgup) =1

wT,, ..., wr, are well defined (existence and unicity) J
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° ?,’;,ax = time where LT,
reaches its maximum length
Tk _ 4k

® Loup = Lpup

@ wr, increasing quadratic
polynomial with
wT, (92 =0
'i/Tk(trI?ax) =
WTk(tpup) =1

< estimated warping functions J
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Step 2 : estimation of benchmark warping functions

o th_ = time where Ly, benchmark warping functions
reaches its maximum length WTp,s .o W,
o th = tk 3

pup pup
@ wr, increasing quadratic

polynomial with | /

wT, (9) =0

7, (th) =
WTk(tpup) =1
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|
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Step 2 : land- Stepl : smoothing experi-
mark registration mental developmental data

' !

[ WTys -y WTy ] [ L1, L1, ]
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Step 2 : Asymptotics (shape profiles and warping func.)

VTx€{T1,..., Tk}, as soon as L1, and St, regular enough

lier, — wrilloo = O(h) + Op {(nk§) ™2} = IS, = Sriloo

and the same rate holds for ||w}, — w7, || and Hg’Tk — ST Moo

wr, involves tk . estimation of tX_ where tX_ (resp. tX_ ) is
such that L’Tk(?,lﬁ,ax) =0 (resp. L,Tk(trl;;ax) =0)
— ?,’,‘qax inherits asymptotic property of L/Tk

< wr, inherits asymptotic property of Z’Tk

s St, = Ly, o w7 inherits asymptotic property of Z’Tk
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Step 3 : growth profile at any temperature T

(B 7). (57, To) (7, T0). .- (#r,. 7))

l l

_ Sr(w) = wr(t) =
S Sr () Ks {hs (T = T} | | Zhey wr(8) Ko £ (T = T)}
I Ks {hs (T~ 7)) Shor Ko {hal (T - T}
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Step 3 : growth profile at any temperature T

(B 7). (57, To) (7, T0). .- (#r,. 7))

l l

Sr(u) = wr(t) =
I Sriw) Ks { s (7, T} | | 2y #r (8) Ko {h(Ti = T)}
Yot Ks {hs (T — T)} k1 K {h"_"l(Tk B T)}

\
([ Lr(t) = Srowr(r) |
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Step3 : growth profile at any temperature

Temperature profile

Growth profiles for any temperature at crime scene
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Step 3 : growth profile derivative at any temp. T
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Step 3 : growth profile derivative at any temp. T

[(3' T (S T)

l

S =
I S (u) Ks {h5H (T = T)
Si1 K {hs!(Ti = T)}
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Step 3 : growth profile derivative at any temp. T

(G5 T, (B0 T) (¥, 1), (¥, i)

l

S =
I S (u) Ks {h5H (T = T)
Si1 K {hs!(Ti = T)}
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Step 3 : growth profile derivative at any temp. T

(G5 T, (B0 T) (¥, 1), (¥, i)

l l

_ g/T(U) = wr(t) =
S S () Ksr {hst(Tie = T)} | | Zho w7, (8) K {1 (T = T}

Yhe1 Ksr {hE/l(Tk = T)} Yhq K {hw, (Tk — T)}
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Step 3 : growth profile derivative at any temp. T

(G5 T, (B0 T) (¥, 1), (¥, i)

_ Spw) = wr(t) =
S S () Ksr {hst(Tie = T)} | | Zho w7, (8) K {1 (T = T}
Yhe1 Ksr {hE/l(Tk = T)} Yhq K {hw, (Tk — T)}
S »

(& = {Sroar} ar(0)]
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Step 3 : Asymptotics (growth profile at any temp. T)

For any temperature T
HIT — L-,-HOO = O(h?) + O(hs) + O(hy)

+Op {(n hi’) —1/3}

and

ey

= 0(h}) + O(hs) + O(hy) + O(hy)
+ Op {(nh?)flﬁ}

o0
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Step 4 : dynamic growth model

e L(t) = growth length at time t after hatching

e {T,,vel0,t)} = temperature variation up t

o L7, (u) = growth length at constant temp. T, at time u after
hatching

L(t)—L(O):/OtC”';”u(u)

t
dv = / L7 o L}Vl oL(v)dv
u=L7HL(v)} 0

v

o for a small enough time interval, the temperature can be
considered roughly constant

@ the growth process follows the local dynamics of the
correspondent constant temperature growth curve at the
point of the curve which reaches the current length




Step 4
©00®0000

Step 4 : Estimated varying temp. growth profile

L(t) — L(0) = / L o L' o L(v)dv



Step 4
©00®0000

Step 4 : Estimated varying temp. growth profile

L(t) — L(0) = /Ot Ly o L7t o L(v)dv

Fine grid of time
0=ty <t < <tp,<t< tyy1 withsup,|tyr1—te]=O0(p7!)



Step 4
©00®0000

Step 4 : Estimated varying temp. growth profile

L(t) — L(0) = / L o L' o L(v)dv

Fine grid of time
0=ty <t < <tp,<t< tyy1 withsup,|tyr1—te]=O0(p7!)

Approximated dynamic growth model

p
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Step 4 : Estimated varying temp. growth profile

L(t) — L(0) = / L o L' o L(v)dv

Fine grid of time
0=ty <t < <tp,<t< tyy1 withsup,|tyr1—te]=O0(p7!)

Approximated dynamic growth model

p

(=1

here Ty := T, (temperature at time t;)

Estimated dynamic growth model

p
L(ty) = L1, (1) = Y (ters — to) {7, 0 L7} 0 L(tr) }
/=1
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Estimated varying temp. growth profile

temperature profile at crime scene

temperatures
15

10

—175 54 tge =0
(hours before corpse discovery)

estimated varying temperature growth profile

<
AF‘
g
£
~ o |
wn
<
o ©
f=
Q o

v’/

~ -

0 50 100 150
hours since hatching



Step 4
0000e00

Step 4 : Asymptotics (varying temp. growth profile)

HE_ LHOO = O(h}) + O(hs) + O(hs)) + O(hy)
+0(hw) + O(p™") + Op {(nhg)_l/“”}




Step 4
©0000e®00

Step 4 : Asymptotics (varying temp. growth profile)

|IL—t|_ = o(m}) + o(hs) + O(hs)) + O(hw)
+0(hw) + O(p™") + Op {(nh})~/3}
and
L—r = O(h?) 4+ O(hs) + O(hs') + O(h,,)

+O(hw) + O(p~") + Op {(nhf)~V/?}

v
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Step 4 : Estimating post-mortem interval (pmi)

Q@ YI, Y5, ..., Y., = nops larval lengths collected at crime

scene at given date t*
Q t* — thateh = pmi
Q YI, Yy, Y., iidst Y] = L(t" — thaten) + €

Nob.

Estimated hatching time

~ (o 2
thateh = arg |rgf {Y — L(t" - t)}

Interpretatlon Given average length Y, the estimated hatching
time thatch is S.t. L(t — thateh) = Y
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Step 4 : Estimating post-mortem interval (pmi)

In practice. Given reasonable range for tp.:cn and corresponding
grid of times t; < --- < tp

e compute L(t* —#),...,L(t* — tp)
@ retain in the grid as hatching time the one making the length
as close as possible to the average length

Estimation of pmi

—

pmi = t* — thatch

V.

—

pmi —pmi = O(h}) + O(hs) + O(hs') + O(hy) + O(hy)
+0(p™") + Op {("h?)_m} + Op (n;blsp)
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Empirical demonstration
[ Jelele)

Simulation studies : estimated hatching time distribution

t € [-200, 0] (range of hatching time)
200 to 0 hours before the time when larvae are collected at
crime scene

hourly time grid t; = —200,...,t01 =0
true hatching time tp :ch = —100

constant temperature profile T;, = 10°C

noised temperatures 7_tk = 10 + 1k where 17, ~ N(0,02) with

0=0.1,0.250.75, 1

o L1090 = estimated varying growth length at constant temp
10°C

o simulate 1000 samples of 20 larvae lengths Y7, ..., Y3, s.t.

Y] = L(100) + €1, ..., Ys5 = L(100) + e29 with iid errors
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Constant temp. profile — hatching time distribution
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Varying temp. profile — hatching time distribution
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Two forensic cases : ADH vs GPA

ADH = Accumulated Degrees Hours
GPA = Growth Profile Approach

No external corroboration (such as defendant confession) of the
time the body has been abandoned J

— compare our Growth Profile Approach (GPA) with ADH
method currenly used }
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Two forensic cases : ADH vs GPA

ADH = Accumulated Degrees Hours
GPA = Growth Profile Approach

Case 1
@ thateh € (—371,0) considered reasonable by forensic scientists

@ 70 Calliphora vicina larvae collected from the body

95% confidence interval
Pmiapn | Pmigpa
[—276, —228] | [-260, —190]
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Two forensic cases : ADH vs GPA

ADH = Accumulated Degrees Hours
GPA = Growth Profile Approach

Case 2

@ 9 Calliphora vomitoria larvae collected from the body
@ estimated temp. at crime scene before body discovery
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Empirical demonstration
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Two forensic cases : ADH vs GPA

ADH = Accumulated Degrees Hours
GPA = Growth Profile Approach

Case 2
@ 9 Calliphora vomitoria larvae collected from the body

@ estimated temp. at crime scene before body discovery

95% confidence interval
Pmiapn | Pmigpa
[—270, —240] | [—255, —249]




Thank you for your attention!
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