Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration

Estimation of temperature-dependent growth profiles of fly larvae with application to criminology

Frédéric Ferraty

(Joint work with D. Pigoli, J. A. D. Aston, A. Mazumder, C. Richards, M.J.R. Hall)

Prague, July 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•0000 0000000 00000 00000 0000 0000 00	Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
	0000						

・ロト ・回ト ・ヨト ・ヨ

э

Outside crime scene

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000						

Outside crime scene

• post-mortem time (pmi)

time difference between death and discovery of corpses

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000						

Outside crime scene

• post-mortem time (pmi)

time difference between death and discovery of corpses

• Important issue : How estimating pmi beyond a few days?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0000	0000000 c ·	00000	000000	0000	0000000	0000				
Solution : forensic entomology										

BLOWFLY LIFE CYCLE (calliphora vicina)

(日)

э

BLOWFLY LIFE CYCLE (calliphora vicina)

(日)

э

eggs

BLOWFLY LIFE CYCLE (calliphora vicina)

eggs

• instar larvae (with two moults)

A D > A P > A D > A D >

э

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration •••••• Solution : forensic entomology

 $\,\hookrightarrow\,$ blowfly development is studied by entomologists

BLOWFLY LIFE CYCLE (calliphora vicina)

- eggs
- instar larvae (with two moults)
- pupation stage (cuticle contracts and hardens into a shiny brown puparium)

A D > A P > A D > A D >

 \hookrightarrow blowfly development is studied by entomologists

BLOWFLY LIFE CYCLE (calliphora vicina)

- eggs
- instar larvae (with two moults)
- pupation stage (cuticle contracts and hardens into a shiny brown puparium)

・ロト ・ 同ト ・ ヨト ・ ヨト

adult fly

Introduction	Our approach 0000000	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Current	investigat	or app	roach fo	or estir	nating <i>p</i>	mi

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Accumulated Degree Hours (ADH) between t_0 and t_1

• t = time (in hours)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Accumulated Degree Hours (ADH) between t_0 and t_1

- t = time (in hours)
- T(t) = Temperature at time t (in C)

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration			
00000	0000000	00000	000000	0000	0000000				
Current investigator approach for estimating <i>nmi</i>									

Accumulated Degree Hours (ADH) between t_0 and t_1

- t = time (in hours)
- T(t) = Temperature at time t (in C)
- T_{limit} = Temperature limit below which no growth occurs

Curront	investigat	tor one	roach f	or actin	nating n	mi
Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
○0●00	0000000	00000	000000	0000	0000000	

Accumulated Degree Hours (ADH) between t_0 and t_1

- t = time (in hours)
- T(t) = Temperature at time t (in C)
- T_{limit} = Temperature limit below which no growth occurs

$$ADH = \int_{t_0}^{t_1} T(t) \, dt - (t_1 - t_0) \times T_{limit}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Curront	investigat	tor one	roach f	or actin	nating n	mi
Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
○0●00	0000000	00000	000000	0000	0000000	

Accumulated Degree Hours (ADH) between t_0 and t_1

- t = time (in hours)
- T(t) = Temperature at time t (in C)
- T_{limit} = Temperature limit below which no growth occurs

$$ADH = \int_{t_0}^{t_1} T(t) \, dt - (t_1 - t_0) \times T_{limit}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00000	Our approach	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Polation	achin hotu	$\alpha \alpha n \Lambda I$	DH and	nmi		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Relationship between ADH and pmi

• t_{hatch} = hatching time

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
○○○●○	0000000	00000	000000	0000	0000000	
Polation	achin hatu	A I	DH and	nmi		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Relationship between ADH and pmi

- t_{hatch} = hatching time
- t_{disc} = discovery time of corpse

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000						
Dolation	achin hatu	ICOD AL		nmi		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Relationship between ADH and pmi

- t_{hatch} = hatching time
- t_{disc} = discovery time of corpse
- $pmi \approx t_{disc} t_{hatch}$

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000						
Dolation	achin hatu	A I		nmi		

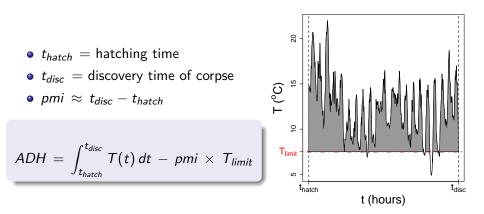
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Relationship between ADH and pmi

- t_{hatch} = hatching time
- t_{disc} = discovery time of corpse
- $pmi \approx t_{disc} t_{hatch}$

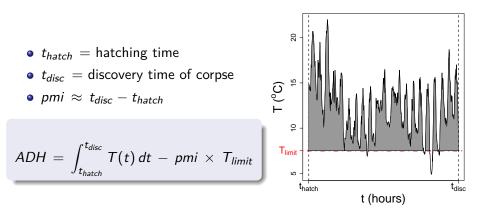
$$ADH = \int_{t_{hatch}}^{t_{disc}} T(t) \, dt - pmi \, imes \, T_{limit}$$

Relationship between ADH and pmi



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Relationship between *ADH* and *pmi*



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation ADH = amount of thermal energy available to the larva

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
○○○○●	0000000	00000	000000	0000	0000000	
Current	investigat	or app	roach fo	or estir	nating <i>p</i>	mi

Numerical approximation (step = 1 hour)

ADH $\approx pmi \times \{\overline{T} - T_{limit}\}$ where \overline{T} = averaged temperatures

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Numerical approximation (step = 1 hour)

 $ADH \approx pmi \times \{\overline{T} - T_{limit}\}$ where \overline{T} = averaged temperatures

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

experimental results about ADH w.r.t. developmental stage of larvae
 Introduction
 Our approach
 Step 1
 Step 2
 Step 3
 Step 4
 Empirical demonstration

 00000
 000000
 00000
 00000
 00000
 000000
 00000

 Current investigator approach for estimating pmi

Numerical approximation (step = 1 hour)

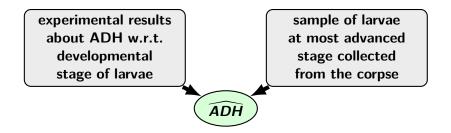
ADH $\approx pmi \times \{\overline{T} - T_{limit}\}$ where \overline{T} = averaged temperatures

experimental results about ADH w.r.t. developmental stage of larvae sample of larvae at most advanced stage collected from the corpse

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Numerical approximation (step = 1 hour)

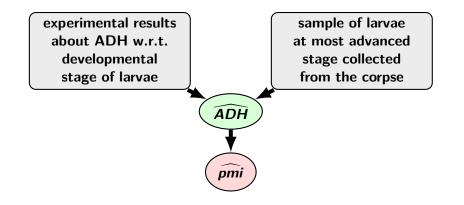
 $ADH \approx pmi \times \{\overline{T} - T_{limit}\}$ where \overline{T} = averaged temperatures



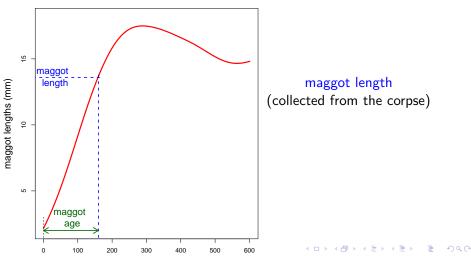
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Numerical approximation (step = 1 hour)

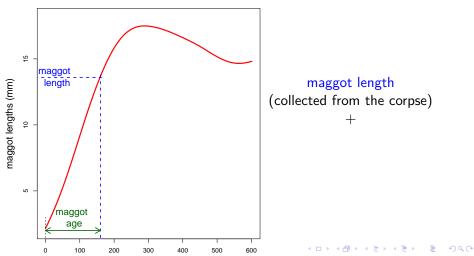
ADH $\approx pmi \times \{\overline{T} - T_{limit}\}$ where \overline{T} = averaged temperatures



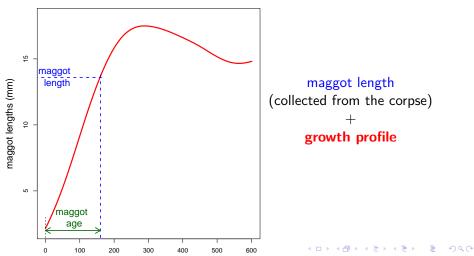
maggot growth profile



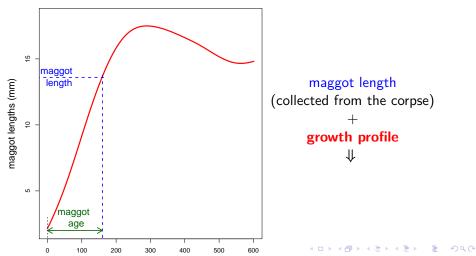
maggot growth profile



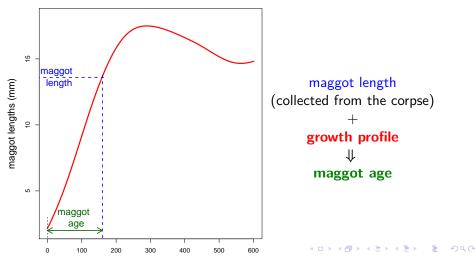
maggot growth profile



maggot growth profile



maggot growth profile



Growth	profile ap	proach				
Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	○●○○○○○	00000	000000	0000	0000000	

Assumption

pmi \approx *oldest* larva (at the most advanced developmental stage)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	0●00000	00000	000000	0000	0000000	
Growth	profile ap	proach				

Assumption

pmi \approx *oldest* larva (at the most advanced developmental stage)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To determine pmi one has to

estimate the length of the *oldest* larva

estimate the growth profile

Introduction 00000	Our approach	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Availabl	e data					

Crime scene data

Investigators

 collect larvae from the body at the most advanced developmental stage

 $\hookrightarrow \text{ larval lengths } Y_1^*, \, Y_2^*, \dots, Y_{n_{obs}}^*$

2 record "continuously" temperatures at the crime scene

Introduction 00000	Our approach	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Availabl	e data					

Crime scene data

Investigators

collect larvae from the body at the most advanced developmental stage

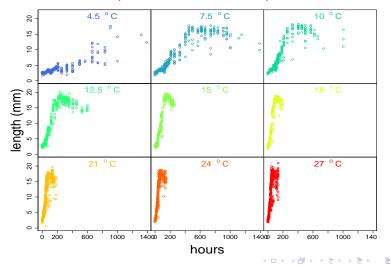
 \hookrightarrow larval lengths $Y_1^*, Y_2^*, \dots, Y_{n_{obs}}^*$

record "continuously" temperatures at the crime scene

Additional data

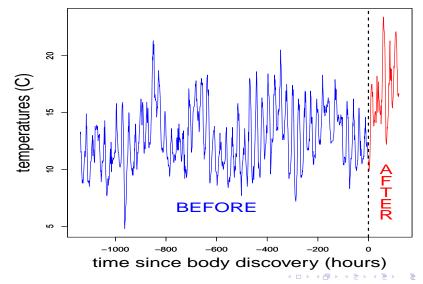
- temperatures from the closest wheather station
 - \hookrightarrow recover past temperatures at the crime scene
- Experimental developmental larvae data

Experimental developmental larvae data depends on temperature (blowfly calliphora vicina)



200

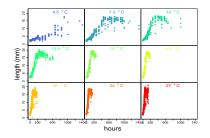
Temperatures profile at crime scene



Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	00000●0	00000	000000	0000	0000000	
Statistic	al challen	ge?				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

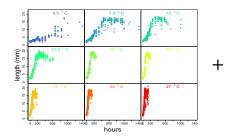
Constant temperature growth data



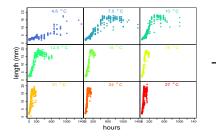
Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	00000●0	00000	000000	0000	0000000	
Statistic	al challen	ge?				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

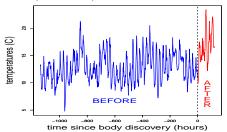
Constant temperature growth data



Constant temperature growth data



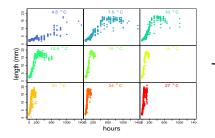
Temperature profile at crime scene



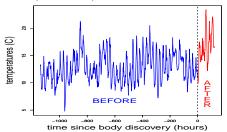
(日)

э

Constant temperature growth data



Temperature profile at crime scene

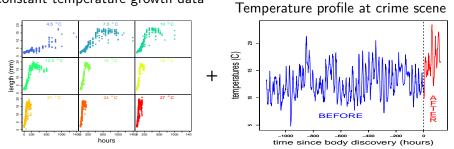


(日)

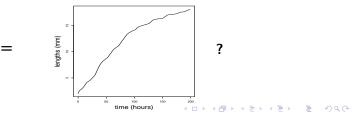
э

=

Constant temperature growth data



Varying temperature growth profile



Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	000000●	00000	000000	0000	0000000	
Four-ste	eps estima	ting pr	ocedure	ż		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Smoothing experimental developmental data

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
00000	000000●	00000	000000	0000	0000000	
Four-ste	eps estima	ting pr	ocedure	è		

- Smoothing experimental developmental data
- Obecompose growth profiles into rescaled growth shape and warping functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction 00000	Our approach	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Four-ste	eps estima	ting pr	ocedure	j		

- Smoothing experimental developmental data
- Obecompose growth profiles into rescaled growth shape and warping functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

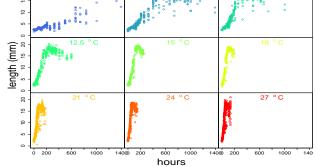
Estimate constant temperature growth profile and its derivative at any temperature

Introduction 00000	Our approach	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000000	Empirical demonstration
Four-ste	eps estima	ting pr	ocedure	j		

- Smoothing experimental developmental data
- Obecompose growth profiles into rescaled growth shape and warping functions
- Sestimate constant temperature growth profile and its derivative at any temperature
- Build the varying temperature growth profile from a dynamic model and estimate pmi

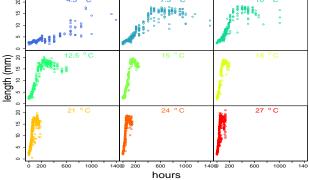
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで





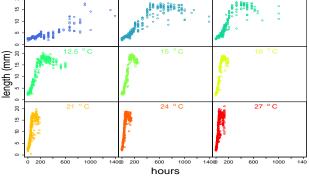
• $T_1 < T_2 < \cdots < T_K$: K experimental temperatures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで



• $T_1 < T_2 < \cdots < T_K : K$ experimental temperatures • $0 = t_1^k < t_2^k < t_{n_k}^k := t_{pup}^k$: observation times at temperature T_k

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで



- $T_1 < T_2 < \cdots < T_K : K$ experimental temperatures • $0 = t_1^k < t_2^k < t_{n_k}^k := t_{pup}^k$: observation times at temperature T_k
- $Y_{kj1}, Y_{kj2}, \ldots, Y_{kjN_{kj}}$: N_{kj} observed larval lengths at time t_j^k after hatching and exposed at temperature T_k

 $L_{T_k}(t) :=$ benchmark growth profile at temperature T_k and time after hatching t

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $L_{T_k}(t) :=$ benchmark growth profile at temperature T_k and time after hatching t

Nonparametric regression model

$$\boldsymbol{Y_{kj\ell}} = \boldsymbol{L_{T_k}(t_j^k)} + \boldsymbol{\varepsilon_{kj\ell}} \ (k = 1, \dots, K, \ j = 1, \dots, n_k, \ \ell = 1, \dots, N_{kj})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

 $L_{T_k}(t) :=$ benchmark growth profile at temperature T_k and time after hatching t

Nonparametric regression model

$$\boldsymbol{Y}_{\boldsymbol{k}\boldsymbol{j}\boldsymbol{\ell}} = \boldsymbol{L}_{\boldsymbol{T}_{\boldsymbol{k}}}(\boldsymbol{t}_{\boldsymbol{j}}^{\boldsymbol{k}}) + \boldsymbol{\varepsilon}_{\boldsymbol{k}\boldsymbol{j}\boldsymbol{\ell}} \ (\boldsymbol{k} = 1, \dots, \boldsymbol{K}, \, \boldsymbol{j} = 1, \dots, n_{\boldsymbol{k}}, \, \boldsymbol{\ell} = 1, \dots, N_{\boldsymbol{k}\boldsymbol{j}})$$

Local linear regression

$$Q(a,b) := \sum_{j=1}^{n_k} \omega_k(t_j^k) \left\{ \overline{Y}_{kj} - a - b(t_j^k - t) \right\}^2 K \left\{ h_L^{-1}(t_j^k - t) \right\}$$
with $\overline{Y}_{kj} := N_{kj}^{-1} \sum_{\ell} Y_{kj\ell}$ and $\omega_k(t_j^k) = N_{kj} / \sum_j N_{kj}$
 $\left\{ \widetilde{L}_{\mathcal{T}_k}(t), \ \widetilde{L}'_{\mathcal{T}_k}(t) \right\} := \arg\min_{a,b} Q(a,b)$

Notations

•
$$\boldsymbol{X}_t = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ t_1^k - t & t_2^k - t & \cdots & t_{n_k}^k - t \end{array} \right)^T$$

Notations

•
$$\mathbf{X}_t = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ t_1^k - t & t_2^k - t & \cdots & t_{n_k}^k - t \end{pmatrix}^T$$

• $\mathbf{K}_t := \operatorname{diag} \left(\omega_k(t_1^k) \, K_1, \dots, \omega_k(t_{n_k}^k) \, K_{n_k} \right)$ where
 $K_j := K \left\{ h_L^{-1}(t_j^k - t) \right\} (j = 1, \dots, n_k)$

Notations

•
$$\mathbf{X}_{t} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ t_{1}^{k} - t & t_{2}^{k} - t & \cdots & t_{n_{k}}^{k} - t \end{pmatrix}^{T}$$

• $\mathbf{K}_{t} := \operatorname{diag} \left(\omega_{k}(t_{1}^{k}) \, \mathbf{K}_{1}, \dots, \omega_{k}(t_{n_{k}}^{k}) \, \mathbf{K}_{n_{k}} \right)$ where
 $\mathbf{K}_{j} := \mathbf{K} \left\{ h_{L}^{-1}(t_{j}^{k} - t) \right\} (j = 1, \dots, n_{k})$
• $\overline{\mathbf{Y}^{k}} := \left(\overline{Y}_{k1}, \dots, \overline{Y}_{kn_{k}} \right)^{T}$

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 1 : smoothing experimental developmental data

Notations

•
$$\mathbf{X}_{t} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ t_{1}^{k} - t & t_{2}^{k} - t & \cdots & t_{n_{k}}^{k} - t \end{pmatrix}^{T}$$

• $\mathbf{K}_{t} := \operatorname{diag} \left(\omega_{k}(t_{1}^{k}) \, \mathbf{K}_{1}, \dots, \omega_{k}(t_{n_{k}}^{k}) \, \mathbf{K}_{n_{k}} \right)$ where
 $\mathbf{K}_{j} := \mathbf{K} \left\{ h_{L}^{-1}(t_{j}^{k} - t) \right\} (j = 1, \dots, n_{k})$
• $\overline{\mathbf{Y}^{k}} := \left(\overline{Y}_{k1}, \dots, \overline{Y}_{kn_{k}} \right)^{T}$

Local linear estimators

$$\widetilde{L}_{\mathcal{T}_k}(t)\,=\,(1,0)^{\mathcal{T}}\left(oldsymbol{X}_t^{\mathcal{T}}\,oldsymbol{\mathcal{K}}_t\,oldsymbol{X}_t
ight)^{-1}oldsymbol{X}_t^{\mathcal{T}}\,oldsymbol{\mathcal{K}}_t\,oldsymbol{\overline{Y}^k}$$

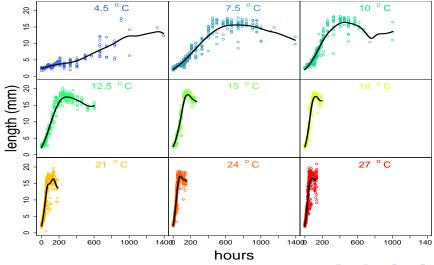
and

$$\widetilde{L}'_{\mathcal{T}_k}(t) = (0,1)^T \left(\boldsymbol{X}_t^T \, \boldsymbol{K}_t \, \boldsymbol{X}_t \right)^{-1} \boldsymbol{X}_t^T \, \boldsymbol{K}_t \, \overline{\boldsymbol{Y}^k}.$$

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration 00000 00000 00000 00000 00000 00000 00000 00000

Step 1 : smoothing experimental developmental data

benchmark growth profiles $\tilde{L}_{T_1}, \ldots, \tilde{L}_{T_K}$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(H1) $\forall T, L_T$ four-times continuously differentiable with a nonnull second derivative in the neighbourhood of the maximum length time

(H2)
$$n := \inf_{k} n_{k} : n \to \infty, h_{L} \to 0$$
 with $n, n h_{L}^{6} \to \infty$ with n

Theorem 1

Under (H1)-(H2) + standard ones, for any $T_k \in \{T_1, \ldots, T_K\}$

$$\left\|\widetilde{L}_{T_k} - L_{T_k}\right\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^3)^{-1/3}\right\}$$

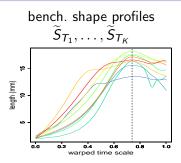
and

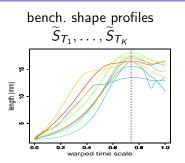
$$\left\| \widetilde{L'}_{T_k} - L'_{T_k} \right\|_{\infty} = O(h_L^2) + O_P\left\{ (nh_L^6)^{-1/3} \right\}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

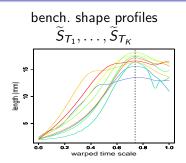
Step 2 :	: growth p	rofile =	= shape	profile	e ∘ time	warping	
Introduction 00000	Our approach	Step 1 00000	Step 2	Step 3 0000	Step 4 0000000	Empirical demonstration	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



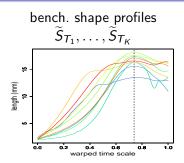


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



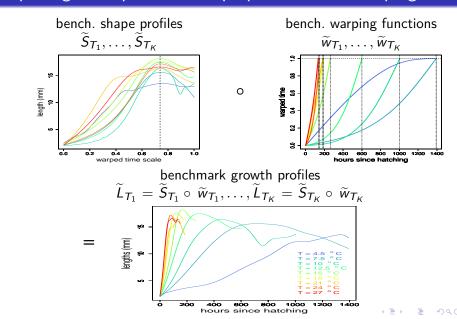
bench. warping functions $\widetilde{W}_{T_1}, \dots, \widetilde{W}_{T_K}$

hours since hatching



bench. warping functions $\widetilde{W}_{T_1}, \dots, \widetilde{W}_{T_K}$

hours since hatching



Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration 0000 Step 2 : benchmark warping functions (landmark registration)

Warping function assumptions

- hatching time $t_{hatch} = 0$
- time of maximum length t_{max}
- pupation time t_{pup} (largest time after hatching)
- 2 $w_{T_1}, \ldots, w_{T_{\kappa}}$ are strictly increasing quadratic polynomial

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

 Introduction
 Our approach
 Step 1
 Step 2
 Step 3
 Step 4
 Empirical demonstration

 00000
 00000
 00000
 00000
 0000
 0000
 0000
 0000

 Step 2 : benchmark warping functions (landmark registration)

Warping function assumptions

 $w_{T_1}, \ldots, w_{T_K} align$

- hatching time $t_{hatch} = 0$
- time of maximum length t_{max}
- pupation time t_{pup} (largest time after hatching)

2 $w_{T_1}, \ldots, w_{T_{\kappa}}$ are strictly increasing quadratic polynomial

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For a given $\alpha \in (0, 1)$, w_{T_1} , w_{T_2} ,... are strictly increasing quadratic polynomial such that $w_{T_1}(0) = 0$, $w_{T_1}(t_{max}^1) = \alpha$, $w_{T_1}(t_{pup}^1) = 1$ $w_{T_2}(0) = 0$, $w_{T_2}(t_{max}^2) = \alpha$, $w_{T_k}(t_{pup}^2) = 1$ Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration 0000 Step 2 : benchmark warping functions (landmark registration)

Warping function assumptions

 $w_{T_1}, \ldots, w_{T_K} align$

- hatching time $t_{hatch} = 0$
- time of maximum length t_{max}
- pupation time t_{pup} (largest time after hatching)

2 w_{T_1}, \ldots, w_{T_K} are strictly increasing quadratic polynomial

For a given $\alpha \in (0, 1)$, w_{T_1} , w_{T_2} ,... are strictly increasing quadratic polynomial such that $w_{T_1}(0) = 0$, $w_{T_1}(t_{max}^1) = \alpha$, $w_{T_1}(t_{pup}^1) = 1$ $w_{T_2}(0) = 0$, $w_{T_2}(t_{max}^2) = \alpha$, $w_{T_k}(t_{pup}^2) = 1$

 w_{T_1}, \ldots, w_{T_K} are well defined (existence and unicity)

• \tilde{t}_{max}^k = time where \tilde{L}_{T_k} reaches its maximum length

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \tilde{t}_{max}^{k} = time where $\tilde{L}_{T_{k}}$ reaches its maximum length
- $\tilde{t}_{pup}^k = t_{pup}^k$

- \tilde{t}_{max}^k = time where \tilde{L}_{T_k} reaches its maximum length
- $\tilde{t}_{pup}^k = t_{pup}^k$
- *w̃_{T_k}* increasing quadratic polynomial with

$$\begin{cases} \widetilde{w}_{\mathcal{T}_k}(0) = 0\\ \widetilde{w}_{\mathcal{T}_k}(\widetilde{t}_{max}^k) = \alpha\\ \widetilde{w}_{\mathcal{T}_k}(t_{pup}^k) = 1 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- \tilde{t}_{max}^{k} = time where $\tilde{L}_{T_{k}}$ reaches its maximum length
- $\tilde{t}_{pup}^k = t_{pup}^k$
- *w̃_{T_k}* increasing quadratic polynomial with

$$\begin{cases} \widetilde{w}_{T_k}(0) = 0\\ \widetilde{w}_{T_k}(\widetilde{t}_{max}^k) = \alpha\\ \widetilde{w}_{T_k}(t_{pup}^k) = 1 \end{cases}$$

 $\stackrel{\hookrightarrow}{\longrightarrow} \begin{array}{l} \text{estimated warping functions} \\ \widetilde{w}_{\mathcal{T}_1}, \dots, \widetilde{w}_{\mathcal{T}_K} \end{array}$

- \tilde{t}_{max}^{k} = time where $\tilde{L}_{T_{k}}$ reaches its maximum length
- $\tilde{t}_{pup}^k = t_{pup}^k$
- *w̃_{T_k}* increasing quadratic polynomial with

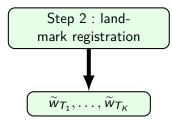
$$\begin{cases} \widetilde{w}_{T_k}(0) = 0\\ \widetilde{w}_{T_k}(\widetilde{t}_{max}^k) = \alpha\\ \widetilde{w}_{T_k}(t_{pup}^k) = 1 \end{cases}$$

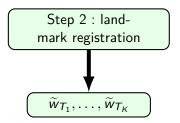
 \hookrightarrow estimated warping functions $\widetilde{w}_{\mathcal{T}_1}, \dots, \widetilde{w}_{\mathcal{T}_K}$

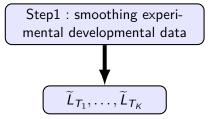
benchmark warping functions $\widetilde{W}_{T_1},\ldots,\widetilde{W}_{T_k}$ 8.0 warped time 9.0 2 20 8 200 800 1000 1200 1400 400 600 hours since hatching

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

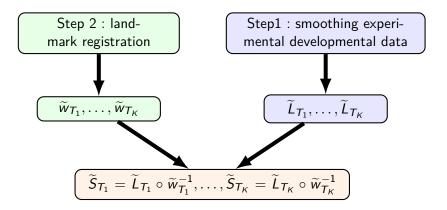
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



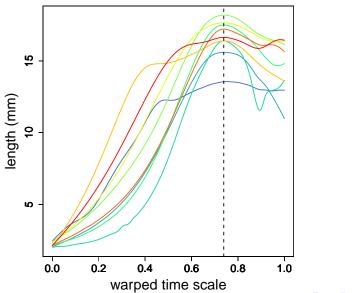




▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 2 : Asymptotics (shape profiles and warping func.)

Theorem 2

$$\forall T_k \in \{T_1, \dots, T_K\}, \text{ as soon as } L_{T_k} \text{ and } S_{T_k} \text{ regular enough}$$
$$\|\widetilde{w}_{T_k} - w_{T_k}\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^6)^{-1/3}\right\} = \|\widetilde{S}_{T_k} - S_{T_k}\|_{\infty}$$
and the same rate holds for $\|\widetilde{w}_{T_k}' - w_{T_k}'\|_{\infty}$ and $\|\widetilde{S}_{T_k}' - S_{T_k}'\|_{\infty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration 00000 00000 00000 0000 0000 0000 0000 0000 Step 2 : Asymptotics (shape profiles and warping func.)

Theorem 2

$$\forall T_k \in \{T_1, \dots, T_K\}$$
, as soon as L_{T_k} and S_{T_k} regular enough

 $\|\widetilde{w}_{T_k} - w_{T_k}\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^6)^{-1/3}\right\} = \|\widetilde{S}_{T_k} - S_{T_k}\|_{\infty}$

and the same rate holds for $\|\widetilde{w}'_{\mathcal{T}_k} - w'_{\mathcal{T}_k}\|_{\infty}$ and $\|\widetilde{S}'_{\mathcal{T}_k} - S'_{\mathcal{T}_k}\|_{\infty}$

Remark

 \widetilde{w}_{T_k} involves \widetilde{t}_{max}^k estimation of t_{max}^k where \widetilde{t}_{max}^k (resp. t_{max}^k) is such that $\widetilde{L}'_{T_k}(\widetilde{t}_{max}^k) = 0$ (resp. $L'_{T_k}(t_{max}^k) = 0$)

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration 00000 Step 2 : Asymptotics (shape profiles and warping func.)

Theorem 2

$$\forall T_k \in \{T_1, \dots, T_K\}$$
, as soon as L_{T_k} and S_{T_k} regular enough

$$\|\widetilde{w}_{\mathcal{T}_k} - w_{\mathcal{T}_k}\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^6)^{-1/3}\right\} = \|\widetilde{S}_{\mathcal{T}_k} - S_{\mathcal{T}_k}\|_{\infty}$$

and the same rate holds for $\|\widetilde{w}'_{\mathcal{T}_k} - w'_{\mathcal{T}_k}\|_{\infty}$ and $\|\widetilde{S}'_{\mathcal{T}_k} - S'_{\mathcal{T}_k}\|_{\infty}$

Remark

 \widetilde{w}_{T_k} involves \widetilde{t}_{max}^k estimation of t_{max}^k where \widetilde{t}_{max}^k (resp. t_{max}^k) is such that $\widetilde{L}'_{T_k}(\widetilde{t}_{max}^k) = 0$ (resp. $L'_{T_k}(t_{max}^k) = 0$) $\hookrightarrow \widetilde{t}_{max}^k$ inherits asymptotic property of \widetilde{L}'_{T_k}

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 2 : Asymptotics (shape profiles and warping func.)

Theorem 2

$$\forall T_k \in \{T_1, \dots, T_K\}$$
, as soon as L_{T_k} and S_{T_k} regular enough

$$\|\widetilde{w}_{\mathcal{T}_k} - w_{\mathcal{T}_k}\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^6)^{-1/3}\right\} = \|\widetilde{S}_{\mathcal{T}_k} - S_{\mathcal{T}_k}\|_{\infty}$$

and the same rate holds for $\|\widetilde{w}'_{\mathcal{T}_k} - w'_{\mathcal{T}_k}\|_{\infty}$ and $\|\widetilde{S}'_{\mathcal{T}_k} - S'_{\mathcal{T}_k}\|_{\infty}$

Remark

 \widetilde{w}_{T_k} involves \widetilde{t}_{max}^k estimation of t_{max}^k where \widetilde{t}_{max}^k (resp. t_{max}^k) is such that $\widetilde{L}'_{T_k}(\widetilde{t}_{max}^k) = 0$ (resp. $L'_{T_k}(t_{max}^k) = 0$) $\hookrightarrow \widetilde{t}_{max}^k$ inherits asymptotic property of \widetilde{L}'_{T_k} $\hookrightarrow \widetilde{w}_{T_k}$ inherits asymptotic property of \widetilde{L}'_{T_k}

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 2 : Asymptotics (shape profiles and warping func.)

Theorem 2

$$\forall T_k \in \{T_1, \dots, T_K\}$$
, as soon as L_{T_k} and S_{T_k} regular enough

$$\|\widetilde{w}_{\mathcal{T}_k} - w_{\mathcal{T}_k}\|_{\infty} = O(h_L^2) + O_P\left\{(nh_L^6)^{-1/3}\right\} = \|\widetilde{S}_{\mathcal{T}_k} - S_{\mathcal{T}_k}\|_{\infty}$$

and the same rate holds for
$$\|\widetilde{w}'_{\mathcal{T}_k} - w'_{\mathcal{T}_k}\|_\infty$$
 and $\|\widetilde{S}'_{\mathcal{T}_k} - S'_{\mathcal{T}_k}\|_\infty$

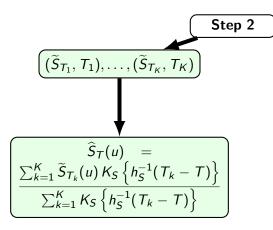
Remark

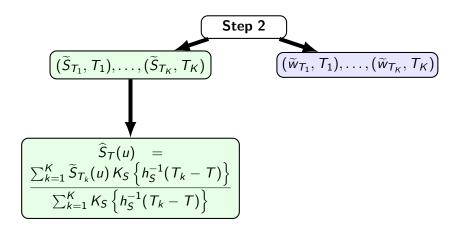
$$\widetilde{w}_{T_k}$$
 involves \widetilde{t}_{max}^k estimation of t_{max}^k where \widetilde{t}_{max}^k (resp. t_{max}^k) is
such that $\widetilde{L}'_{T_k}(\widetilde{t}_{max}^k) = 0$ (resp. $L'_{T_k}(t_{max}^k) = 0$)
 $\hookrightarrow \widetilde{t}_{max}^k$ inherits asymptotic property of \widetilde{L}'_{T_k}
 $\hookrightarrow \widetilde{w}_{T_k}$ inherits asymptotic property of \widetilde{L}'_{T_k}
 $\hookrightarrow \widetilde{S}_{T_k} \stackrel{def}{=} \widetilde{L}_{T_k} \circ \widetilde{w}_{T_k}^{-1}$ inherits asymptotic property of \widetilde{L}'_{T_k}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

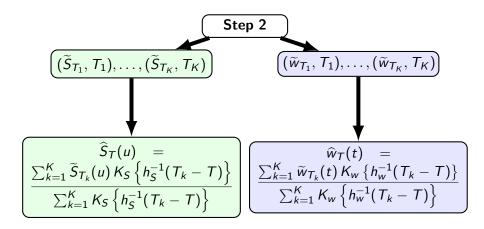
$$(\tilde{S}_{T_1}, T_1), \dots, (\tilde{S}_{T_K}, T_K))$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

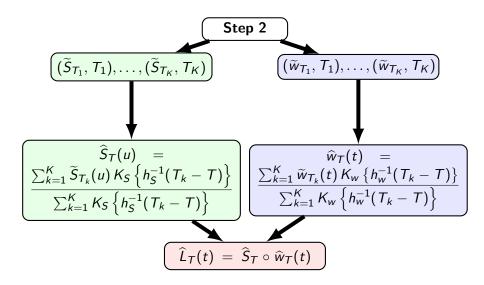




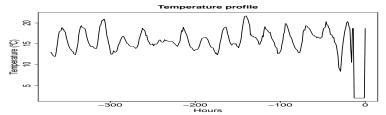
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



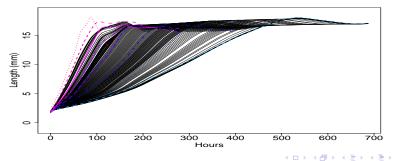
▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙



◆□ > ◆□ > ◆三 > ◆三 > 三 - のへぐ



Growth profiles for any temperature at crime scene

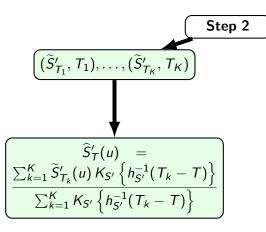


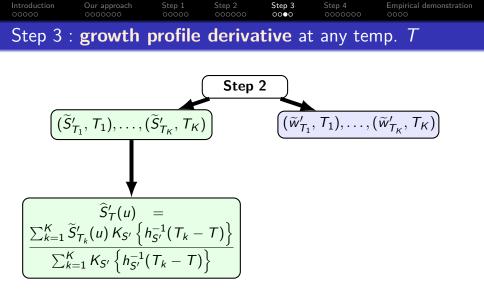
ж

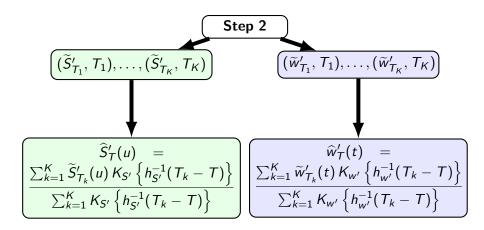
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\overbrace{(\widetilde{S}'_{T_1}, T_1), \dots, (\widetilde{S}'_{T_K}, T_K)}^{\text{Step 2}}$$

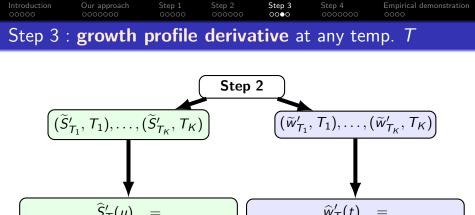
(日) (四) (日) (日) (日)







▲□▶▲□▶▲□▶▲□▶ □ ● ●



$$\frac{\sum_{k=1}^{K} \widetilde{S}'_{T_{k}}(u) \, K_{S'} \left\{ h_{S'}^{-1}(T_{k} - T) \right\}}{\sum_{k=1}^{K} K_{S'} \left\{ h_{S'}^{-1}(T_{k} - T) \right\}} \left[\frac{\sum_{k=1}^{K} \widetilde{w}'_{T_{k}}(t) \, K_{w'} \left\{ h_{w'}^{-1}(T_{k} - T) \right\}}{\sum_{k=1}^{K} K_{w'} \left\{ h_{w'}^{-1}(T_{k} - T) \right\}} \right]}{\left[\widehat{L}'_{T} = \left\{ \widehat{S}'_{T} \circ \widehat{w}_{T}(t) \right\} \widehat{w}'_{T}(t)} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3

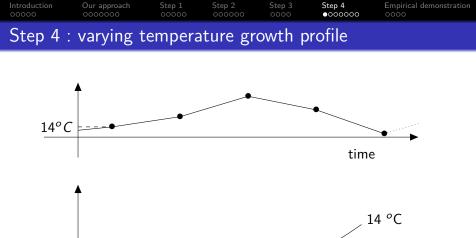
For any temperature T

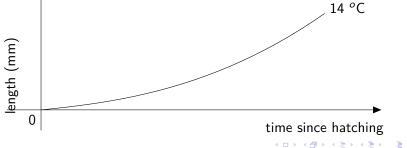
$$\begin{aligned} \left\| \widehat{L}_{T} - L_{T} \right\|_{\infty} &= O(h_{L}^{2}) + O(h_{S}) + O(h_{w}) \\ &+ O_{P} \left\{ \left(n h_{L}^{6} \right)^{-1/3} \right\} \end{aligned}$$

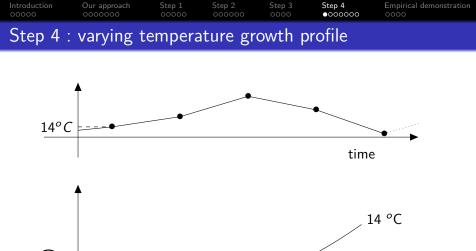
and

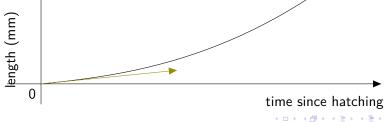
$$\begin{aligned} \left\| \hat{L}'_{T} - L'_{T} \right\|_{\infty} &= O(h_{L}^{2}) + O(h_{S'}) + O(h_{w}) + O(h_{w'}) \\ &+ O_{P} \left\{ (nh_{L}^{6})^{-1/3} \right\} \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

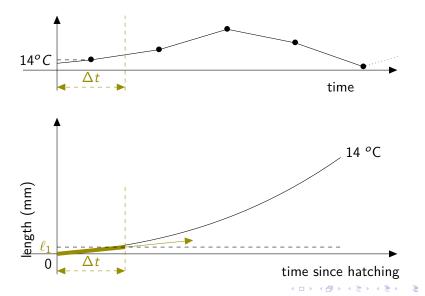




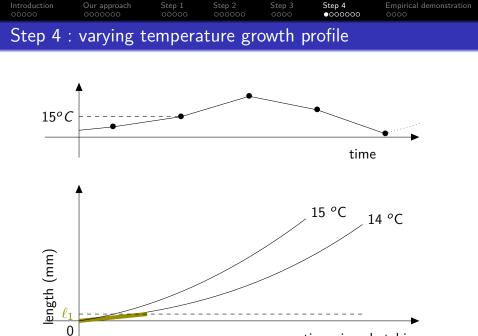




æ

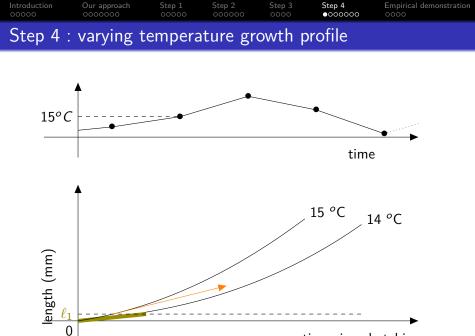


୍ରର୍ବ



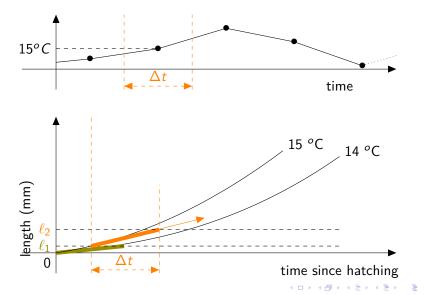
time since hatching

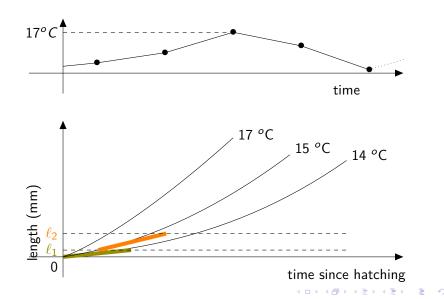
æ

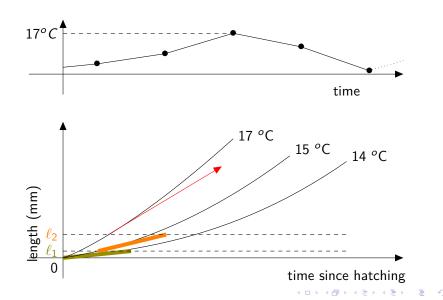


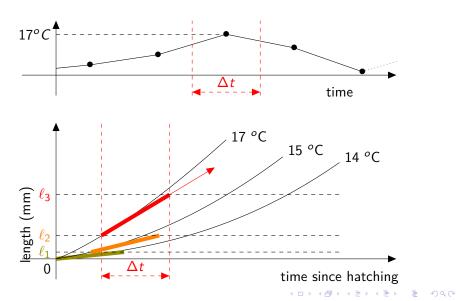
time since hatching

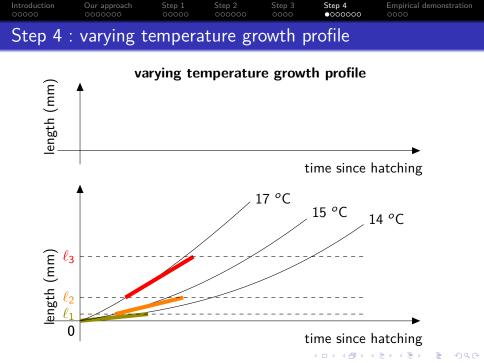
æ

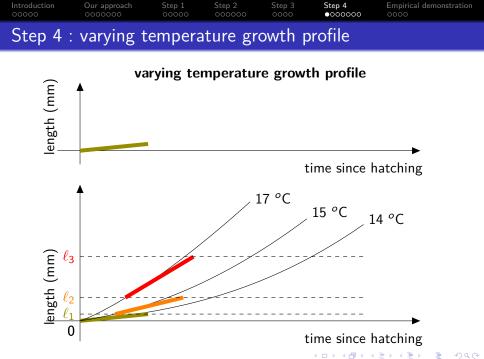


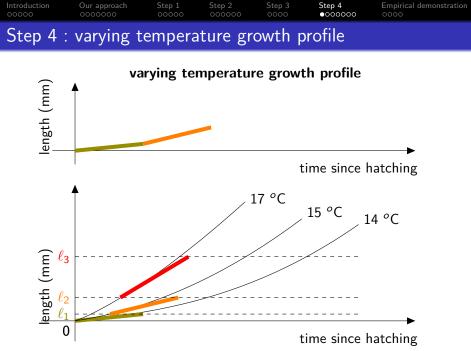




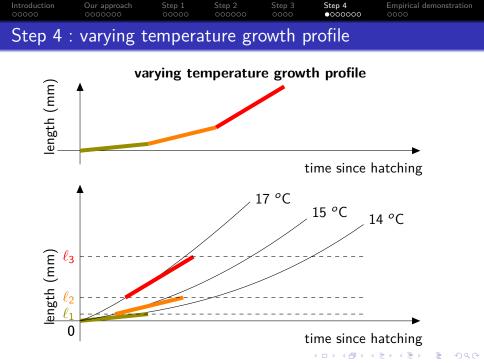








ヘロト 人間 ト 人 ヨト 人 ヨト æ



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• L(t) = growth length at time t after hatching

- L(t) = growth length at time t after hatching
- $\{T_v, v \in [0, t)\}$ = temperature variation up t

- L(t) = growth length at time t after hatching
- $\{T_v, v \in [0, t)\}$ = temperature variation up t
- $L_{T_v}(u) =$ growth length at constant temp. T_v at time u after hatching

- L(t) = growth length at time t after hatching
- $\{T_v, v \in [0, t)\}$ = temperature variation up t
- $L_{T_v}(u) =$ growth length at constant temp. T_v at time u after hatching

$$L(t) - L(0) = \int_0^t \left. \frac{dL_{T_v}(u)}{du} \right|_{u = L_{T_v}^{-1} \{L(v)\}} dv = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 4 : dynamic growth model

- L(t) = growth length at time t after hatching
- $\{T_v, v \in [0, t)\}$ = temperature variation up t
- $L_{T_v}(u) =$ growth length at constant temp. T_v at time u after hatching

$$L(t) - L(0) = \int_0^t \left. \frac{dL_{T_v}(u)}{du} \right|_{u = L_{T_v}^{-1} \{L(v)\}} dv = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

• for a small enough time interval, the temperature can be considered roughly constant

- L(t) = growth length at time t after hatching
- $\{T_v, v \in [0, t)\}$ = temperature variation up t
- $L_{T_v}(u) =$ growth length at constant temp. T_v at time u after hatching

$$L(t) - L(0) = \int_0^t \left. \frac{dL_{T_v}(u)}{du} \right|_{u = L_{T_v}^{-1} \{L(v)\}} dv = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

- for a small enough time interval, the temperature can be considered roughly constant
- the growth process follows the local dynamics of the correspondent constant temperature growth curve at the point of the curve which reaches the current length

 Introduction
 Our approach
 Step 1
 Step 2
 Step 3
 Step 4
 Empirical demonstration

 Step 4 : Estimated varying temp. growth profile

$$L(t)-L(0) = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

 Introduction
 Our approach
 Step 1
 Step 2
 Step 3
 Step 4
 Empirical demonstration

 Step 4 : Estimated varying temp. growth profile

$$L(t)-L(0) = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

Fine grid of time

 $0 = t_0 < t_1 < \cdots < t_p < t < t_{p+1}$ with $\sup_{\ell} |t_{\ell+1} - t_{\ell}| = O(p^{-1})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 4 : Estimated varying temp. growth profile

$$L(t)-L(0) = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

Fine grid of time

 $0 = t_0 < t_1 < \cdots < t_p < t < t_{p+1}$ with $\sup_{\ell} |t_{\ell+1} - t_{\ell}| = O(p^{-1})$

Approximated dynamic growth model

$$L(t_p) - L_{T_1}(t_1) = \sum_{\ell=1}^{p} (t_{\ell+1} - t_{\ell}) \left\{ L'_{T_{\ell}} \circ L_{T_{\ell}}^{-1} \circ L(t_{\ell}) \right\} + O(p^{-1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

here $T_{\ell} := T_{t_{\ell}}$ (temperature at time t_{ℓ})

Introduction Our approach Step 1 Step 2 Step 3 Step 4 Empirical demonstration Step 4 : Estimated varying temp. growth profile

$$L(t)-L(0) = \int_0^t L'_{T_v} \circ L_{T_v}^{-1} \circ L(v) dv$$

Fine grid of time

 $0 = t_0 < t_1 < \cdots < t_p < t < t_{p+1}$ with $\sup_{\ell} |t_{\ell+1} - t_{\ell}| = O(p^{-1})$

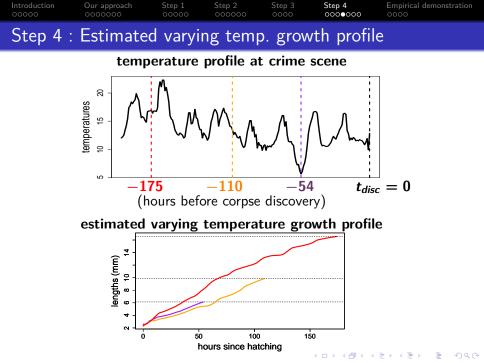
Approximated dynamic growth model

$$L(t_{p}) - L_{T_{1}}(t_{1}) = \sum_{\ell=1}^{p} (t_{\ell+1} - t_{\ell}) \left\{ L'_{T_{\ell}} \circ L_{T_{\ell}}^{-1} \circ L(t_{\ell}) \right\} + O(p^{-1})$$

here $T_{\ell} := T_{t_{\ell}}$ (temperature at time t_{ℓ})

Estimated dynamic growth model

$$\widehat{L}(t_{p}) - \widehat{L}_{\mathcal{T}_{1}}(t_{1}) = \sum_{\ell=1}^{p} (t_{\ell+1} - t_{\ell}) \left\{ \widehat{L}'_{\mathcal{T}_{\ell}} \circ \widehat{L}_{\mathcal{T}_{\ell}}^{-1} \circ \widehat{L}(t_{\ell}) \right\}$$



Theorem 4

 $\begin{aligned} \left\| \widehat{L} - L \right\|_{\infty} &= O(h_L^2) + O(h_S) + O(h_{S'}) + O(h_w) \\ &+ O(h_{w'}) + O(p^{-1}) + O_P \left\{ (nh_L^6)^{-1/3} \right\} \end{aligned}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Step 4 :	Asympto	tics (va	arving to	emp. g	rowth pr	ofile)	
Introduction 00000	Our approach 0000000	Step 1 00000	Step 2 000000	Step 3 0000	Step 4 0000●00	Empirical demonstration	

Theorem 4

$$\begin{aligned} \left\| \widehat{L} - L \right\|_{\infty} &= O(h_L^2) + O(h_S) + O(h_{S'}) + O(h_w) \\ &+ O(h_{w'}) + O(p^{-1}) + O_P \left\{ (nh_L^6)^{-1/3} \right\} \end{aligned}$$

 and

$$\begin{aligned} \left\| \hat{L}' - L' \right\|_{\infty} &= O(h_L^2) + O(h_S) + O(h_{S'}) + O(h_w) \\ &+ O(h_{w'}) + O(p^{-1}) + O_P \left\{ (nh_L^6)^{-1/3} \right\} \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• $Y_1^*, Y_2^*, \ldots, Y_{n_{obs}}^* = n_{obs}$ larval lengths collected at crime scene at given date t^*

• $Y_1^*, Y_2^*, \ldots, Y_{n_{obs}}^* = n_{obs}$ larval lengths collected at crime scene at given date t^*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2 $t^* - t_{hatch} = pmi$

• $Y_1^*, Y_2^*, \ldots, Y_{n_{obs}}^* = n_{obs}$ larval lengths collected at crime scene at given date t^*

▲□▶▲□▶▲□▶▲□▶ □ のQの

- 2 $t^* t_{hatch} = pmi$

- $Y_1^*, Y_2^*, \dots, Y_{n_{obs}}^* = n_{obs}$ larval lengths collected at crime scene at given date t^*
- $t^* t_{hatch} = pmi$

Estimated hatching time

$$\widehat{t}_{hatch} = \arg \inf_{t} \left\{ \overline{Y} - \widehat{L}(t^* - t) \right\}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $Y_1^*, Y_2^*, \dots, Y_{n_{obs}}^* = n_{obs}$ larval lengths collected at crime scene at given date t^*
- $t^* t_{hatch} = pmi$

3
$$Y_1^*, Y_2^*, \ldots, Y_{n_{obs}}^*$$
 iid s.t. $Y_i^* = L(t^* - t_{hatch}) + \varepsilon_i$

Estimated hatching time

$$\widehat{t}_{hatch} = \arg \inf_{t} \left\{ \overline{Y} - \widehat{L}(t^* - t) \right\}^2$$

Interpretation. Given average length \overline{Y} , the estimated hatching time \hat{t}_{hatch} is s.t. $\hat{L}(t^* - \hat{t}_{hatch}) \approx \overline{Y}$

In practice. Given reasonable range for t_{hatch} and corresponding grid of times $t_1 < \cdots < t_p$

In practice. Given reasonable range for t_{hatch} and corresponding grid of times $t_1 < \cdots < t_p$

• compute
$$\widehat{L}(t^* - \widehat{t}_1), \dots, \widehat{L}(t^* - \widehat{t}_p)$$

In practice. Given reasonable range for t_{hatch} and corresponding grid of times $t_1 < \cdots < t_p$

- compute $\widehat{L}(t^* \widehat{t}_1), \dots, \widehat{L}(t^* \widehat{t}_p)$
- retain in the grid as hatching time the one making the length as close as possible to the average length

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In practice. Given reasonable range for t_{hatch} and corresponding grid of times $t_1 < \cdots < t_p$

- compute $\widehat{L}(t^* \widehat{t}_1), \dots, \widehat{L}(t^* \widehat{t}_p)$
- retain in the grid as hatching time the one making the length as close as possible to the average length

Estimation of pmi

$$\widehat{pmi} = t^* - \widehat{t}_{hatch}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In practice. Given reasonable range for t_{hatch} and corresponding grid of times $t_1 < \cdots < t_p$

- compute $\widehat{L}(t^* \widehat{t}_1), \dots, \widehat{L}(t^* \widehat{t}_p)$
- retain in the grid as hatching time the one making the length as close as possible to the average length

Estimation of pmi

$$\widehat{pmi} = t^* - \widehat{t}_{hatch}$$

Theorem 5

$$\widehat{pmi} - pmi = O(h_L^2) + O(h_S) + O(h_{S'}) + O(h_w) + O(h_{w'}) + O(p^{-1}) + O_P \left\{ (nh_L^6)^{-1/3} \right\} + O_P \left(n_{obs}^{-1/2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• hourly time grid $t_1 = -200, ..., t_{201} = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- hourly time grid $t_1 = -200, ..., t_{201} = 0$
- true hatching time $t_{hatch} = -100$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- hourly time grid $t_1 = -200, ..., t_{201} = 0$
- true hatching time $t_{hatch} = -100$
- constant temperature profile $T_{t_k} \equiv 10^{o}C$

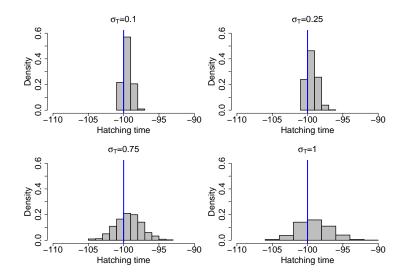
- t ∈ [-200, 0] (range of hatching time)
 200 to 0 hours before the time when larvae are collected at crime scene
- hourly time grid $t_1 = -200, ..., t_{201} = 0$
- true hatching time $t_{hatch} = -100$
- constant temperature profile $T_{t_k} \equiv 10^o C$
- noised temperatures $\tilde{T}_{t_k} = 10 + \eta_k$ where $\eta_k \sim N(0, \sigma^2)$ with $\sigma = 0.1, 0.250.75, 1$

- t ∈ [-200, 0] (range of hatching time)
 200 to 0 hours before the time when larvae are collected at crime scene
- hourly time grid $t_1 = -200, \ldots, t_{201} = 0$
- true hatching time $t_{hatch} = -100$
- constant temperature profile $T_{t_k} \equiv 10^o C$
- noised temperatures $\widetilde{T}_{t_k} = 10 + \eta_k$ where $\eta_k \sim N(0, \sigma^2)$ with $\sigma = 0.1, 0.250.75, 1$
- \widehat{L} = estimated varying growth length at constant temp 10°C

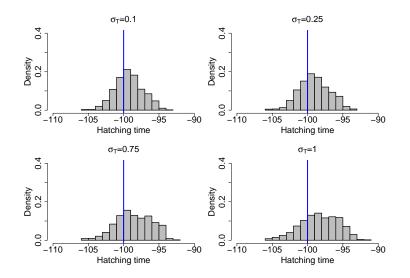
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- t ∈ [-200, 0] (range of hatching time)
 200 to 0 hours before the time when larvae are collected at crime scene
- hourly time grid $t_1 = -200, ..., t_{201} = 0$
- true hatching time $t_{hatch} = -100$
- constant temperature profile $T_{t_k} \equiv 10^o C$
- noised temperatures $\widetilde{T}_{t_k} = 10 + \eta_k$ where $\eta_k \sim N(0, \sigma^2)$ with $\sigma = 0.1, 0.250.75, 1$
- $\widetilde{L}_{10^o}=$ estimated varying growth length at constant temp $10^o C$
- simulate 1000 samples of 20 larvae lengths Y_1^*, \ldots, Y_{20}^* s.t. $Y_1^* = \hat{L}(100) + \varepsilon_1, \ldots, Y_{20}^* = \hat{L}(100) + \varepsilon_{20}$ with iid errors

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

ADH = Accumulated Degrees HoursGPA = Growth Profile Approach

No external corroboration (such as defendant confession) of the time the body has been abandoned

ADH = Accumulated Degrees Hours GPA = Growth Profile Approach

No external corroboration (such as defendant confession) of the time the body has been abandoned

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \hookrightarrow compare our Growth Profile Approach (GPA) with ADH method currenly used

 Introduction
 Our approach
 Step 1
 Step 2
 Step 3
 Step 4
 Empirical demonstration

 00000
 000000
 00000
 00000
 00000
 00000
 00000

 Two forensic cases : ADH vs GPA

ADH = Accumulated Degrees HoursGPA = Growth Profile Approach

Case 1

• $t_{hatch} \in (-371,0)$ considered reasonable by forensic scientists

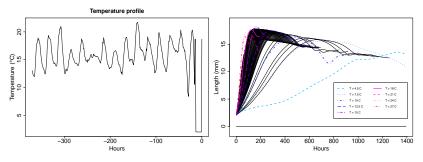
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• 70 Calliphora vicina larvae collected from the body

ADH = Accumulated Degrees Hours GPA = Growth Profile Approach

Case 1

- $t_{hatch} \in (-371, 0)$ considered reasonable by forensic scientists
- 70 Calliphora vicina larvae collected from the body



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの

ADH = Accumulated Degrees Hours GPA = Growth Profile Approach

Case 1

- $t_{hatch} \in (-371, 0)$ considered reasonable by forensic scientists
- 70 Calliphora vicina larvae collected from the body

95% confidence interval

$$\begin{array}{c|c|c|c|c|c|c|c|}\hline \hline pmi_{ADH} & \hline pmi_{GPA} \\ \hline \hline [-276, -228] & [-260, -190] \\ \hline \end{array}$$

ADH = Accumulated Degrees HoursGPA = Growth Profile Approach

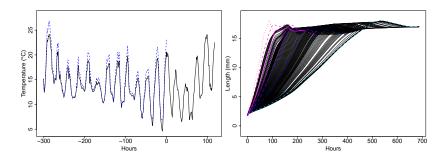
Case 2

- 9 Calliphora vomitoria larvae collected from the body
- estimated temp. at crime scene before body discovery

ADH = Accumulated Degrees Hours GPA = Growth Profile Approach

Case 2

- 9 Calliphora vomitoria larvae collected from the body
- estimated temp. at crime scene before body discovery



< ロ > < 同 > < 回 > < 回 >

ADH = Accumulated Degrees Hours GPA = Growth Profile Approach

Case 2

- 9 Calliphora vomitoria larvae collected from the body
- estimated temp. at crime scene before body discovery

95% confidence interval

$$\widehat{pmi}_{ADH}$$
 \widehat{pmi}_{GPA}

 [-270, -240]
 [-255, -249]

Introduction	Our approach	Step 1	Step 2	Step 3	Step 4	Empirical demonstration
						0000

Thank you for your attention !

・ロト ・西ト ・ヨト ・ヨー うへぐ