Statistical Data Depth and its Applications

Stanislav Nagy

KPMS MFF, Praha

FEL ČVUT Praha 2018

イロト イポト イヨト イヨト

Introduction to Statistical Data Depth

Motivation: Order Statistics, Quantiles and Ranks

- Point estimation
- Data visualisation
- L-estimation and testing
- 2 Halfspace Depth: Quantiles for Multivariate Data
 - The depth and its properties
 - Applications: non-parametric statistics in Euclidean spaces
 - Difficulties and open problems

3 Extensions

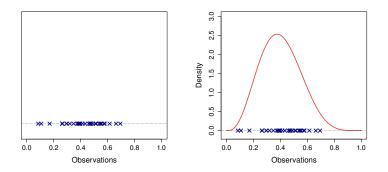
- Other depth measures
- Depth for complex data

A (1) ► A (1) ► F

Point estimation Data visualisation L-estimation and testing

Univariate Statistical Model

A random sample X_1, \ldots, X_n of **univariate** observations (X)

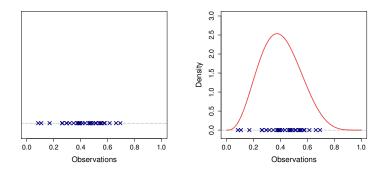


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Univariate Statistical Model

$X_1, \ldots, X_n \sim P \in \mathscr{P}(\mathbb{R})$ with a density



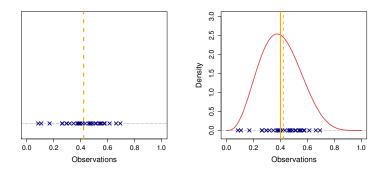
イロト イポト イヨト イヨト

3

Point estimation Data visualisation L-estimation and testing

Location Estimation: Mean

Mean $E X_1 = \int_{\mathbb{R}} x d P(x)$ estimated by $1/n \sum_{i=1}^n X_i$

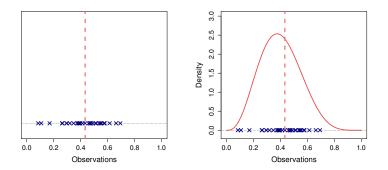


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Location Estimation: Median

Sample median: the middle-most observation $X_{(n/2)}$

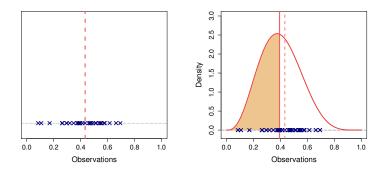


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.5) = \sup \left\{ x \in \mathbb{R} \colon P((-\infty, x]) \le 0.5 \right\}$

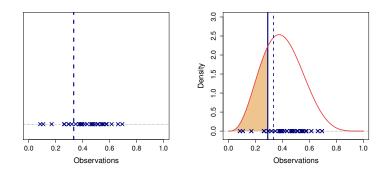


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.25) = \sup \{x \in \mathbb{R} : P((-\infty, x]) \le 0.25\}$

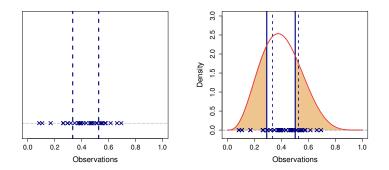


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Quantiles for Univariate Data

 $q(0.75) = \sup \{x \in \mathbb{R} : P((-\infty, x]) \le 0.75\}$

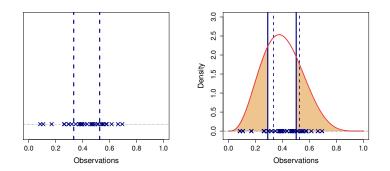


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testine

Quantiles for Univariate Data

IQR = q(0.75) - q(0.25)

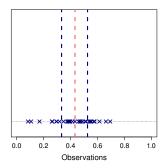


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Boxplot

Quantile-based visualisation tool (Tukey, 1969)

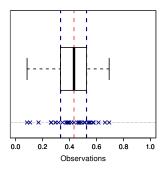


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Boxplot

Quantile-based visualisation tool (Tukey, 1969)

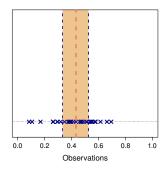


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

L-estimators

Central part of the data

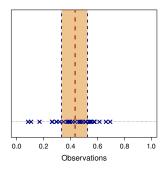


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

L-estimators

L-statistics: Functions of order statistics (trimmed mean)



イロト イポト イヨト イヨト

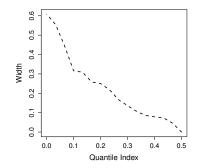
 Motivation: Order Statistics, Quantiles and Ranks
 Point estimation

 Halfspace Depth: Quantiles for Multivariate Data
 Data visualisation

 Extensions
 L-estimation and testing

Scale Curve

 $s: [0, 1/2] \rightarrow [0, \infty): t \mapsto q(1-t) - q(t)$



イロト イポト イヨト イヨト

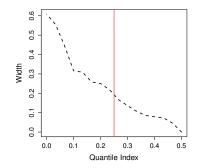
 Motivation: Order Statistics, Quantiles and Ranks
 Point estimation

 Halfspace Depth: Quantiles for Multivariate Data
 Data visualisation

 Extensions
 L-estimation and testing

Scale Curve

 $s: [0, 1/2] \rightarrow [0, \infty): t \mapsto q(1-t) - q(t)$

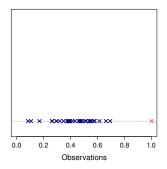


イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	
Halfspace Depth: Quantiles for Multivariate Data	
Extensions	L-estimation and testing

Outlier

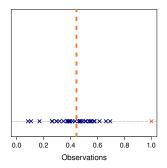
Contaminate the dataset with an error $X_{n+1} = 1$



Point estimation Data visualisation L-estimation and testing

Outlier

Mean and median of the contaminated data



イロト イポト イヨト イヨト

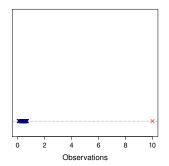
 Motivation: Order Statistics, Quantiles and Ranks
 Point estimation

 Halfspace Depth: Quantiles for Multivariate Data
 Data visualisation

 Extensions
 L-estimation and testing

Severe Outlier

Contaminate with $X_{n+1} = 10$

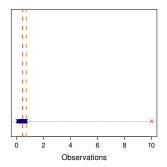


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Severe Outlier

Mean and median of the contaminated data

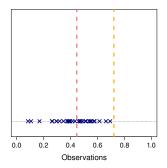


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Severe Outlier

Mean and median of the contaminated data

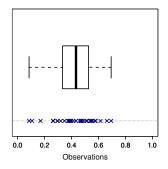


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Boxplots

Boxplot of the original data

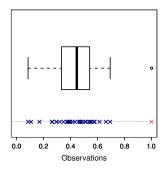


イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Boxplots

Boxplot of the contaminated data



イロト イポト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Rank Tests: Two Sample Problem

Let $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_m \sim Q$ be independent univariate random samples (no ties). Test

 $H_0: P = Q$ against $H_1: P \neq Q$.

Wilcoxon's rank sum test (Wilcoxon, 1945):

- Pool the two samples into Z₁,..., Z_{n+m} and rank these observations (1 through n+m).
- Add up the ranks of those observations which came from the sample from *P*. Denote by *R*.
- Reject H₀ if R is either too small, or too large.

イロト 不得 とくき とくき とうき

Point estimation Data visualisation L-estimation and testing

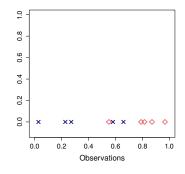
イロト イポト イヨト イヨト

3

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 5$$

R = 17 (range from 15 to 40), p-value 0.03



 Motivation: Order Statistics, Quantiles and Ranks
 Point estimation

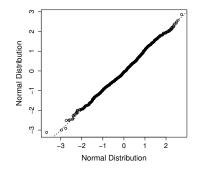
 Halfspace Depth: Quantiles for Multivariate Data
 Data visualisation

 Extensions
 L-estimation and testing

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

 $t\mapsto (q_X(t),q_Y(t))$



イロト イポト イヨト イヨト

 Motivation: Order Statistics, Quantiles and Ranks
 Point estimation

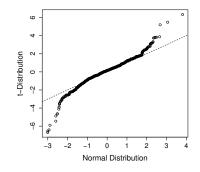
 Halfspace Depth: Quantiles for Multivariate Data
 Data visualisation

 Extensions
 L-estimation and testing

Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

 $t\mapsto (q_X(t),q_Y(t))$



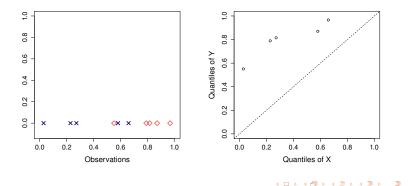
イロト イ理ト イヨト イヨト

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 5$$

R = 17 (range from 15 to 40), p-value 0.03



Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(2,1), n = m = 15$$

R = 143 (range from 120 to 345), p-value 0.00

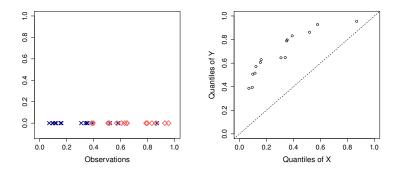


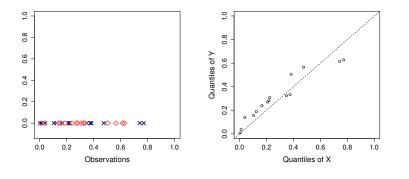
Image: A matrix and a matrix

Point estimation Data visualisation L-estimation and testing

Wilcoxon's Rank Sum Test: Illustration

$$X \sim B(1,2), Y \sim B(1,2), n = m = 15$$

R = 220 (range from 120 to 345), p-value 0.62



Stanislav Nagy Dat

Image: A matrix and a matrix

Point estimation Data visualisation L-estimation and testing

Summary: Ranks and Orders

In \mathbb{R} , rank and order statistics enable:

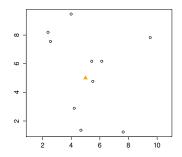
- effective data visualisation (Q-Q plot);
- outlier detection (boxplot);
- construction of robust estimators (L-statistics);
- non-parametric data analysis (rank tests).

All thanks to the linear ordering on the sample space.

イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

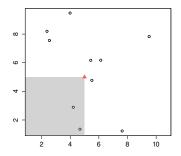
How to order multivariate data?



イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

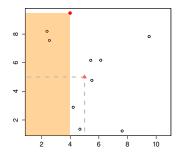
How to order multivariate data?



イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

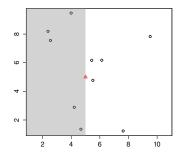
How to order multivariate data?



문 🛌 문

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

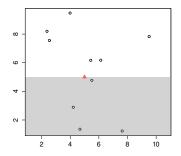
How to order multivariate data?



イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

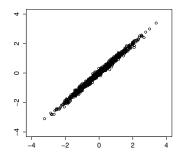
How to order multivariate data?



イロト イポト イヨト イヨト

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

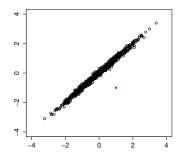
How to order multivariate data?



• • • • • • • • • • • •

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

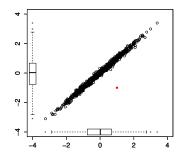
How to order multivariate data?



• • • • • • • • • • • •

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

How to order multivariate data?

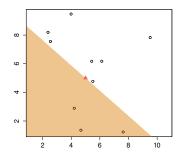


• • • • • • • • • • • •

문 🛌 문

Motivation: Order Statistics, Quantiles and Ranks	The depth and its properties
Halfspace Depth: Quantiles for Multivariate Data	Applications: non-parametric statistics in Euclidean spaces
Extensions	Difficulties and open problems

How to order multivariate data?



イロト イポト イヨト イヨト

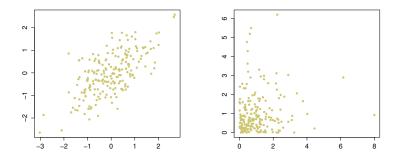
æ

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data	The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems
Extensions	

Data Depth

For a random variable $X \sim P \in \mathscr{P}(\mathbb{R}^d)$, consider the **depth** of $x \in \mathbb{R}^d$ w.r.t. *P*

 $D \colon \mathbb{R}^d \times \mathscr{P}\left(\mathbb{R}^d\right) \to [0,1] \colon (x,P) \mapsto D(x,P).$

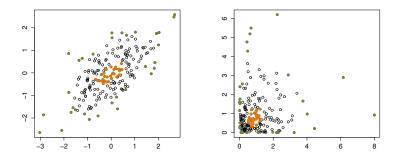


Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data	The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems
Extensions	Difficulties and open problems

Data Depth

For a random variable $X \sim P \in \mathcal{P}(\mathbb{R}^d)$, consider the **depth** of $x \in \mathbb{R}^d$ w.r.t. *P*

 $D \colon \mathbb{R}^d \times \mathscr{P}\left(\mathbb{R}^d\right) \to [0,1] \colon (x,P) \mapsto D(x,P).$



A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

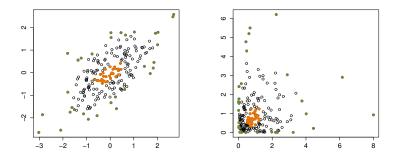
 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 Difficulties and open problems
 Difficulties and open problems

Halfspace Depth

Halfspace depth (Tukey, 1975) of an observation in \mathbb{R}^d

 $hD(x; P) = \inf_{H \in \mathcal{H}(x)} P(H).$

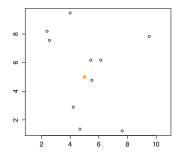


< □ > < 同 > < 回 > < 回 > < 回

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

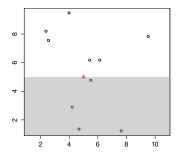
Halfspace Depth



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

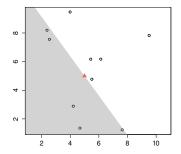
Halfspace Depth



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

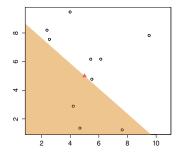
Halfspace Depth



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Halfspace Depth



The depth and its properties

Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Brief History of *hD* (in Statistics)

- 1955 Idea with minimal halfspaces first used by Hodges;
- 1975 Tukey proposes *hD* as a visualisation tool;
- 1982 Donoho studies *hD* in his Ph.D. thesis;
- 1992 depth introduced in AoS (Donoho and Gasko, 1992);
- 1999 Rousseeuw and Ruts study *hD* in full generality;
- 2000 Zuo and Serfling provide a general framework for the depth.

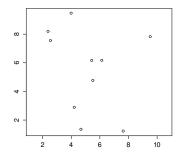
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

æ

Depth Region

 $hD_{\alpha}(P) = \{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\}$



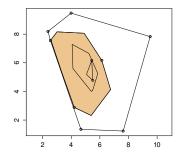
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

э

Depth Region

 $hD_{\alpha}(P) = \{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\}$



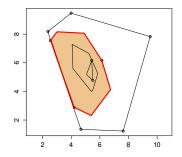
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

э

Depth Contour

Topological boundary of $hD_{\alpha}(P)$

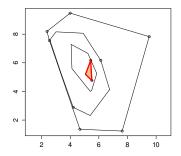


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Halfspace Median

Point(s) at which the depth $hD(\cdot; P)$ is maximized over \mathbb{R}^d



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Elementary Properties

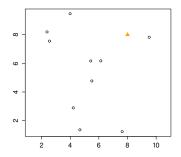
It holds true that

- hD(x; P) is well defined for any $x \in \mathbb{R}^d$ and $P \in \mathcal{P}(\mathbb{R}^d)$;
- $hD(x; P) \in [0, 1];$
- a halfspace median always exists;

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

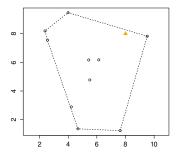
Minimizing Halfspace



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

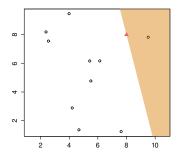
Minimizing Halfspace



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

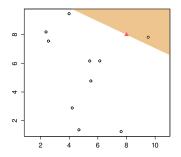
Minimizing Halfspace



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

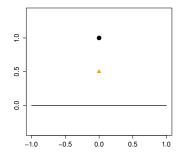


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The minimizing halfspace may not exist

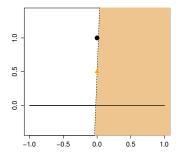


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Minimizing Halfspace

The minimizing halfspace may not exist



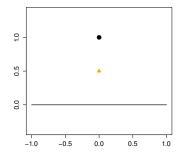
The depth and its properties

Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Assumption 1: Smoothness (S)

 $P(\partial H) = 0$ for each halfspace H

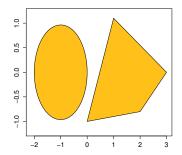


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

< □ > < 同 > < 回 > < 回 > < 回

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)

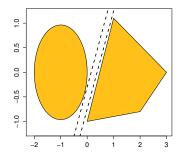


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)

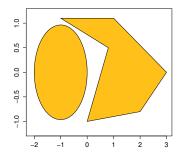


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Assumption 2: Contiguous Support (C)

The mass of *P* cannot be divided by a **slab of zero probability** (Mizera and Volauf, 2002)



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Further Properties

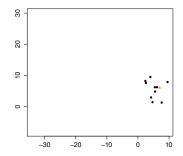
For P that satisfies (S)

- $hD(x; P) \in [0, 1/2];$
- a minimizing halfspace exists at any $x \in \mathbb{R}^d$;
- if (C) is also true, the halfspace median is unique.

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$



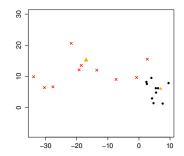
イロト イポト イヨト イヨト

3

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$



イロト イポト イヨト イヨト

 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

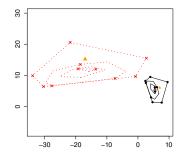
 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 Extensions
 Difficulties and open problems

Affine Invariance

For any $A \in \mathbb{R}^{d \times d}$ non-singular and $b \in \mathbb{R}^d$

 $hD(x; P_X) = hD(Ax + b; P_{AX+b}).$



イロト イポト イヨト イヨト

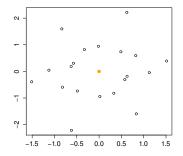
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Maximality

If X is **symmetric** (i.e. $P_X = P_{-X}$), then

 $hD(0; P) = \sup_{x \in \mathbb{R}^d} hD(x; P).$



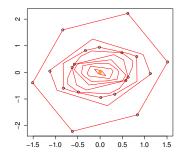
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Maximality

If X is **symmetric** (i.e. $P_X = P_{-X}$), then

 $hD(0; P) = \sup_{x \in \mathbb{R}^d} hD(x; P).$



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

(Semi-)Continuity

Theorem (Mizera and Volauf, 2002)

For any
$$x_v \to x$$
 in \mathbb{R}^d and $P_v \xrightarrow{w}_{v \to \infty} P$ in $\mathscr{P}\left(\mathbb{R}^d\right)$

$$\limsup_{v\to\infty} hD(x_v; P_v) \le hD(x; P).$$

In particular,

$$\limsup_{v\to\infty} hD(x_v; P) \leq hD(x; P).$$

If P satisfies (S) then also

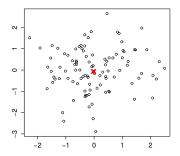
$$\lim_{v\to\infty}hD(x_v;P_v)=hD(x;P).$$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

A D > A B > A B > A

Robustness

Halfspace median is a robust estimator

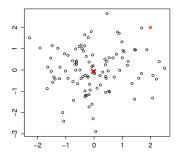


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

A D > A B > A B > A

Robustness

Halfspace median is a robust estimator

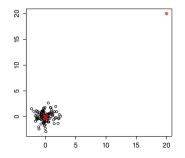


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Robustness

Halfspace median is a robust estimator

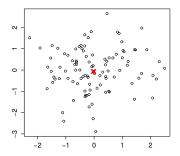


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Robustness

Halfspace median is a robust estimator



The depth and its properties

Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Sample Version Consistency

Theorem (Donoho and Gasko, 1992)

For any $\mathsf{P} \in \mathscr{P}\left(\mathbb{R}^{d}
ight)$ almost surely

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}^d}|hD(x;P_n)-hD(x;P)|=0.$$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Vanishing at Infinity

Theorem (Donoho and Gasko, 1992)

For any
$$\mathcal{P} \in \mathscr{P}\left(\mathbb{R}^{d}
ight)$$

 $\lim_{\|x\| o \infty} h \mathcal{D}(x; \mathcal{P}) = 0.$

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Properties of Depth Regions

For each $\alpha > 0$ it holds true that (Rousseeuw and Ruts, 1999)

- $hD_{\alpha}(P) = \bigcap \{H \in \mathcal{H} : P(H) > 1 \alpha\};$
- $hD_{\alpha}(P)$ is **closed**;
- $hD_{\alpha}(P)$ is **bounded**;
- $hD_{\alpha}(P)$ is **convex**.

 $hD(\cdot; P)$ is a **quasi-concave function** for any *P*.

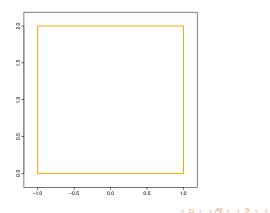
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d : hD(x; P) \ge \alpha\right\}$ is a convex set



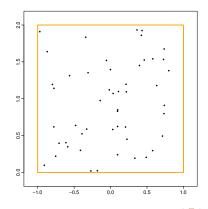
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

-47 ▶

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d \colon hD(x; P) \geq \alpha\right\}$ is a convex set



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d \colon hD(x; P) \geq \alpha\right\}$ is a convex set

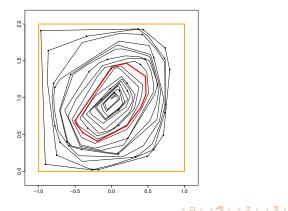
Stanislav Nagy

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Quasi-Concavity

hD is always **quasi-concave**, i.e. for each $\alpha \in [0, 1]$

 $\left\{x \in \mathbb{R}^d \colon hD(x; P) \geq \alpha\right\}$ is a convex set



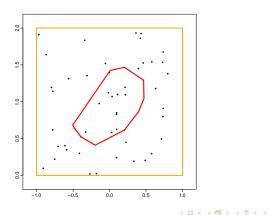
Stanislav Nagy

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

 $\alpha \mapsto \left\{ \textbf{\textit{x}} \in \mathbb{R}^d \colon \textbf{\textit{hD}}(\textbf{\textit{x}}; \textbf{\textit{P}}) \geq \alpha \right\}$

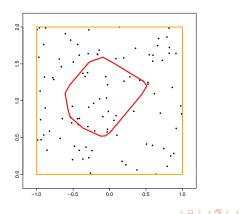


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

 $\alpha \mapsto \left\{ x \in \mathbb{R}^d \colon \textit{hD}(x; \textit{P}) \geq \alpha \right\}$



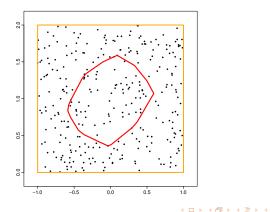
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Consistency of Depth Regions

Consider the mapping

 $\alpha \mapsto \left\{ x \in \mathbb{R}^d \colon hD(x; P) \ge \alpha \right\}$



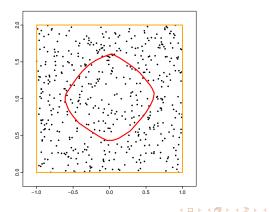
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

Consistency of Depth Regions

Consider the mapping

 $\alpha \mapsto \left\{ x \in \mathbb{R}^d \colon hD(x; P) \ge \alpha \right\}$

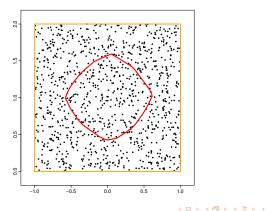


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping

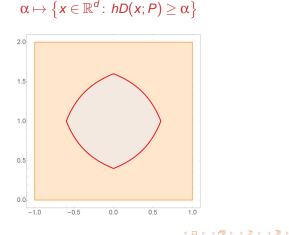
 $\alpha \mapsto \left\{ x \in \mathbb{R}^d \colon hD(x; P) \ge \alpha \right\}$



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Consistency of Depth Regions

Consider the mapping



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Properties of Depth Regions

Convex sets are equipped with the Hausdorff distance d_H .

Theorem (Dyckerhoff, 2017+)

Let (S) and (C) be true for P. Then the mapping

 $\alpha \mapsto hD_{\alpha}(P)$

is continuous. Further, for any $\boldsymbol{\alpha}$

$$d_H(hD_{\alpha}(P_n),hD_{\alpha}(P)) \xrightarrow[n \to \infty]{a.s.} 0.$$

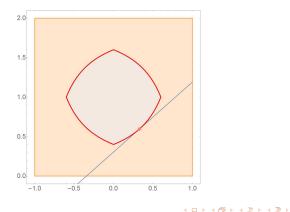
The previous results of Zuo and Serfling (2000b) are not correct!

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Asymptotic Normality

$\sqrt{n}hD(x; P_n)$ is asymptotically normal

 $\iff hD(x; P)$ is realised by a single halfspace $H \in \mathcal{H}$ (Massé, 2004)

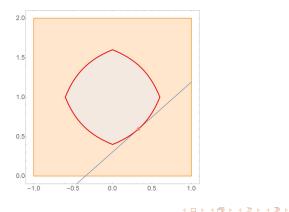


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Asymptotic Normality

 $\sqrt{n}hD(x; P_n)$ is asymptotically normal

 \iff the contour of $hD(\cdot; P)$ is **smooth** at x (Gijbels and Nagy, 2016)

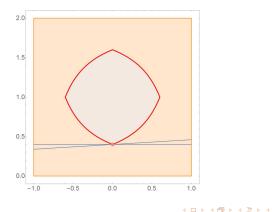


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

Asymptotic Normality

 $\sqrt{n}hD(x; P_n)$ is asymptotically normal

 \iff the contour of $hD(\cdot; P)$ is **smooth** at x (Gijbels and Nagy, 2016)

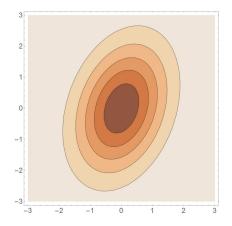


The depth and its properties

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

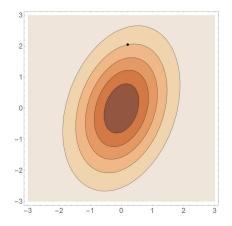


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

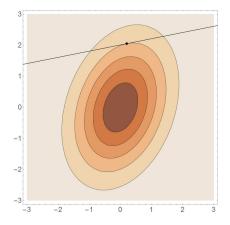


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

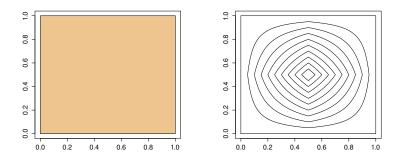


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

< □ > < 同 > < 回 > < 回 > < 回

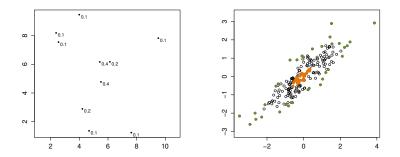
Population Depth: Uniform Distribution on a Square

Uniform distribution on a simple convex body



Data Ordering

Depth induces a centre - outward ordering of points

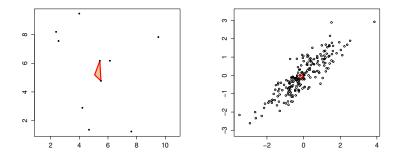


A D > A B > A B > A B

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data Extensions Difficulties and open problems

Halfspace Median

Point(s) that maximize the depth over \mathbb{R}^d



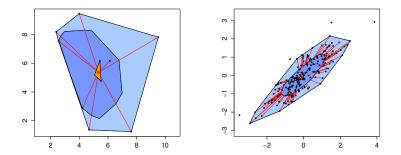
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

э

Bagplot: A Multivariate Boxplot

Central bag: 50% deepest observations (Rousseeuw et al., 1999)



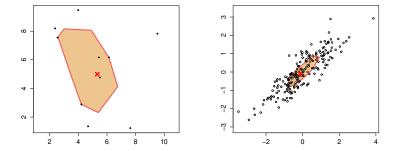
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

Multivariate L-statistics

Depth-trimmed mean (Fraiman and Meloche, 1999)

$$\sum_{i=1}^{n} X_{i} \mathbb{I}(hD(X_{i}; P_{n}) \geq \alpha) / \sum_{i=1}^{n} \mathbb{I}(hD(X_{i}; P_{n}) \geq \alpha)$$



 Motivation: Order Statistics, Quantiles and Ranks
 The depth and its properties

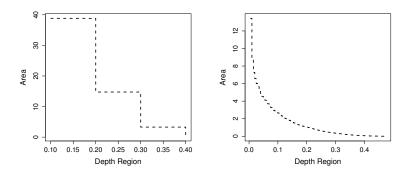
 Halfspace Depth: Quantiles for Multivariate Data
 Applications: non-parametric statistics in Euclidean spaces

 Difficulties and open problems
 Difficulties and open problems

Scale Curve

Volume of the depth region (Liu et al., 1999)

 $s\colon [0,1]\to [0,\infty)\colon \alpha\mapsto \lambda(\mathit{hD}_{\alpha}(\mathit{P}))$



A D > A A > A

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

3

Multivariate Rank Tests: Two Sample Problem

Let $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_m \sim Q$ be independent **multivariate** random samples. Test

 $H_0: P = Q$ against $H_1: P \neq Q$.

Wilcoxon's rank sum test (Liu and Singh, 1993):

- Pool the two samples into Z₁,..., Z_{n+m} and rank these observations by their depth (1 through n+m).
- Add up the ranks of those observations which came from the sample from *P*. Denote by *R*.
- Reject H_0 if R is either too small, or too large.

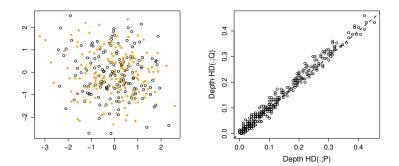
The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

• • • • • • • • • • • •

э

D-D Plots: Multivariate Q-Q Plots

Replace quantiles by depth in Q-Q plots (Liu et al., 1999)

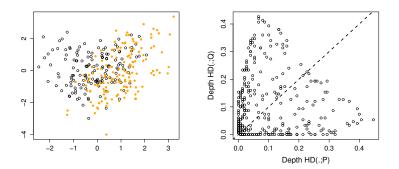


The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

э

D-D Plots: Multivariate Q-Q Plots

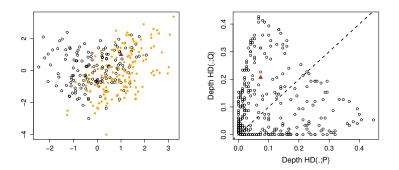
Replace quantiles by depth in Q-Q plots (Liu et al., 1999)



Motivation: Order Statistics, Quantiles and Ranks Applications: non-parametric statistics in Euclidean spaces Halfspace Depth: Quantiles for Multivariate Data

Classification

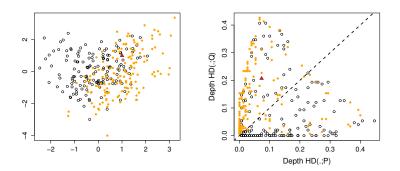
Classify a new observation into one of the groups (Li et al., 2012)



• • • • • • • • • • • • •

Classification

Classify a new observation into one of the groups (Li et al., 2012)



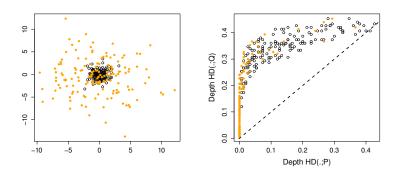
• • • • • • • • • • • •

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

< □ > < 同 > < 回 > < 回 > < 回

D-D Plots: Multivariate Q-Q Plots

D-D plots with unequal scatters



The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Computational Complexity of hD

- best known exact algorithms have complexity O(log(n)n^{d-1}) (Rousseeuw and Struyf, 1998);
- feasible computation only for $n \le 1000$ and $d \le 5$;
- approximations of *hD* (Dyckerhoff, 2004)

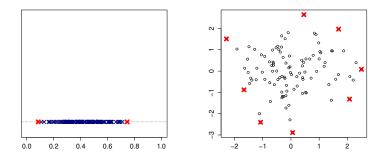
$$hD(x; P) = \inf_{u \in \mathbb{S}^{d-1}} hD(\langle x, u \rangle; P_{\langle X, u \rangle}) \approx \min_{j=1,...,N} hD(\langle x, U_j \rangle; P_{\langle X, U_j \rangle}).$$

• choice of the parameter N and the distribution of U (Nagy, 2018+).

Extensions Difficulties and open problems	Halfspace Depth: Quantiles for Multivariate Data	The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems
---	--	---

Ties

With increasing *d* the number of **depth-ties** increases



• • • • • • • • • • • •

æ

The depth and its properties Applications: non-parametric statistics in Euclidean spaces Difficulties and open problems

イロト イポト イヨト イヨト

Some Open Problems

Little is known about

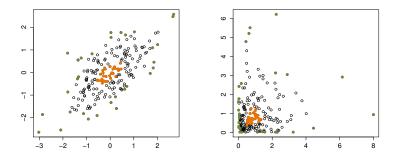
- uniform distributional asymptotics;
- higher order asymptotics;
- detection of rough points;
- finite/large sample properties of depth-based tests and estimators;
- population depth and its properties.

Other depth measures Depth for complex data

Simplicial Depth

Simplicial depth (Liu, 1988) of an observation in \mathbb{R}^d

 $sD(x; P) = P(x \in \mathbb{S}(X_1, \ldots, X_{d+1})).$



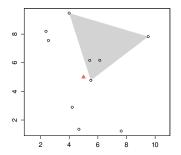
Other depth measures Depth for complex data

イロト イポト イヨト イヨト

æ

Simplicial Depth

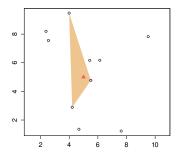
$$sD(x; P_n) = {\binom{n}{d+1}}^{-1} \sum_{1 \le X_{i_1} < \cdots < X_{i_{d+1}} \le n} \mathbb{I}\left(x \in \mathbb{S}(X_{i_1}, \dots, X_{i_{d+1}})\right).$$



Other depth measures Depth for complex data

Simplicial Depth

$$sD(x;P_n) = \binom{n}{d+1}^{-1} \sum_{1 \leq X_{i_1} < \cdots < X_{i_{d+1}} \leq n} \mathbb{I}\left(x \in \mathbb{S}(X_{i_1},\ldots,X_{i_{d+1}})\right).$$



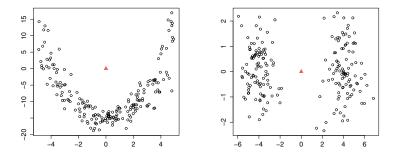
イロト イポト イヨト イヨト

Other depth measures Depth for complex data

• • • • • • • • • • • •

Unimodality / Quasi-Concavity

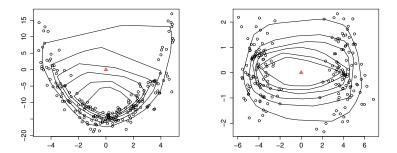
Proper depth is intended to be unimodal and quasi-concave



Other depth measures Depth for complex data

Unimodality / Quasi-Concavity

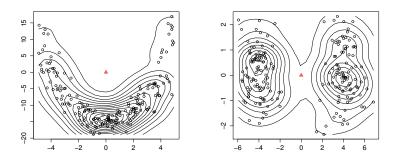
Proper depth is intended to be unimodal and quasi-concave



Other depth measures

Local Depths

Relaxation of unimodality leads to local depths

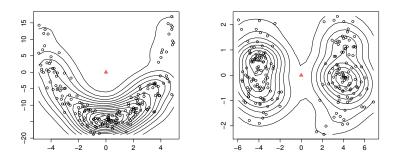


Other depth measures Depth for complex data

イロト イポト イヨト イヨト

Likelihood Depth

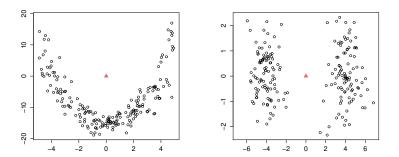
Multivariate density estimator (Fraiman and Meloche, 1999)



Other depth measures Depth for complex data

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)



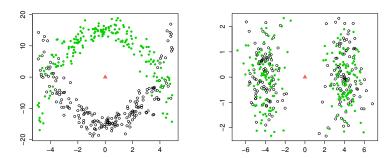
• • • • • • • • • • • •

Other depth measures Depth for complex data

• • • • • • • • • • • •

Local Halfspace Depth

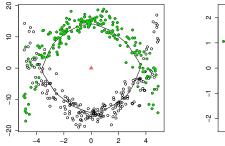
Localization of *hD* (Paindaveine and Van Bever, 2013)

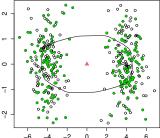


Other depth measures Depth for complex data

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)





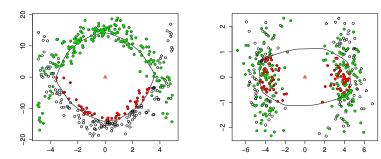
• • • • • • • • • • • •

э

Other depth measures

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)



A D > A B > A B > A

э

Other depth measures

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)

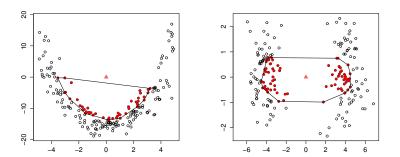


• • • • • • • • • • • •

Other depth measures

Local Halfspace Depth

Localization of *hD* (Paindaveine and Van Bever, 2013)



• • • • • • • • • • • • •

Other depth measures Depth for complex data

Further Extensions

Depths for more exotic data — variants of the halfspace and simplicial depth:

- for directional data (data in \mathbb{S}^{d-1}) (Liu and Singh, 1992);
- for data on graphs and trees (Small, 1997);
- for infinite-dimensional (functional) data (Fraiman and Muniz, 2001);
- for general metric spaces (Carrizosa, 1996);
- in regression problems (Rousseeuw and Hubert, 1999);
- ...

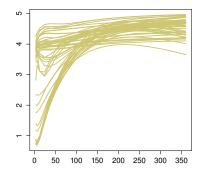
Many proposals, many tests, many simulations. **No sufficient** comprehensive theory.

Motivation: Order Statistics, Quantiles and Ranks Halfspace Depth: Quantiles for Multivariate Data Extensions	Other depth measures Depth for complex data
---	--

Functional Data

 $X \sim P \in \mathcal{P}(\mathcal{C})$ and X_1, \ldots, X_n i.i.d. from *P*. Consider the depth of functional observations w.r.t. *P* (or *P_n*)

 $D\colon \mathcal{C}\times \mathscr{P}(\mathcal{C})\to [0,1].$

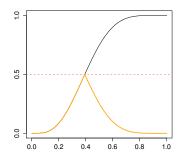


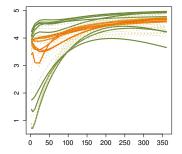
• • • • • • • • • • • •

Integrated Depths

Fraiman and Muniz (2001), Nagy et al. (2016)

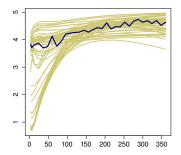
 $FD(x; P) = \int_{0}^{1} hD_1(x(t), P_t) dt, \quad hD_1(u; Q) = 1/2 - |1/2 - F_Q(u)|.$





Data Contamination

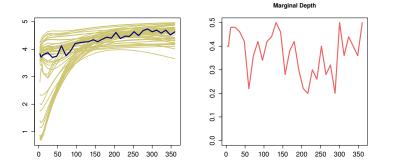
Consider **contaminated functional data**. Does the depth recognize the outlier?



Data Contamination

Integrated depth (Fraiman and Muniz, 2001)

$$FD(x; P) = \int_0^1 hD(x(t); P_t) \,\mathrm{d}\,t$$



 Motivation: Order Statistics, Quantiles and Ranks
 Other depth measures

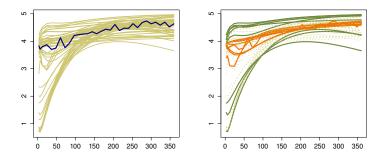
 Halfspace Depth: Quantiles for Multivariate Data
 Depth for complex data

 Extensions
 Other depth measures

Integrated Depth

Integrated depth (Fraiman and Muniz, 2001)

$$FD(x; P) = \int_0^1 hD(x(t); P_t) \,\mathrm{d}\,t$$



• • • • • • • • •

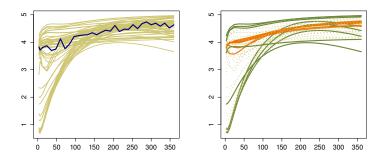
Other depth measures Depth for complex data

A D > A A > A

Depth with Derivatives

Integrated depth of differentiable functions (Hlubinka et al., 2015)

$$FD^{(2)}(x; P) = \int_0^1 hD((x(t), x'(t)); (P_t, P_t')) dt$$



Other depth measures Depth for complex data

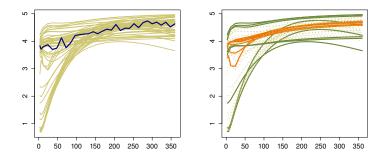
Image: A matrix and a matrix

글 🕨 🖌 글

Depth with Derivatives without Derivatives

Second order integrated depth (Nagy et al., 2017)

$$FD^{2}(x; P) = \int_{0}^{1} \int_{0}^{1} hD((x(t), x(s)); (P_{t}, P_{s})) dt ds$$

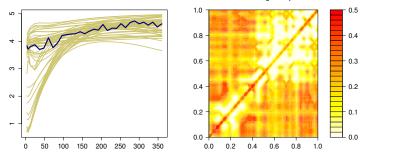


Other depth measures Depth for complex data

Higher Order Integrated Depth

Second order integrated depth (Nagy et al., 2017)

 $FD^{2}(x; P) = \int_{0}^{1} \int_{0}^{1} hD((x(t), x(s)); (P_{t}, P_{s})) dt ds$



Bivariate Marginal Depth

Other depth measures Depth for complex data

Higher Order Integrated Depth

$$FD^{(2)}(x; P) = \int_0^1 hD((x(t), x'(t)); (P_t, P_t')) dt$$

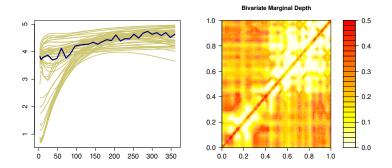
$$FD^2(x; P) = \int_0^1 \int_0^1 hD((x(t), x(s)); (P_t, P_s)) dt ds$$

Theorem (Nagy et al., 2017)

$$hD((x(t), x'(t)); (P_t, P'_t)) = \lim_{h \to 0} hD((x(t), x(t+h)); (P_t, P_{t+h})).$$

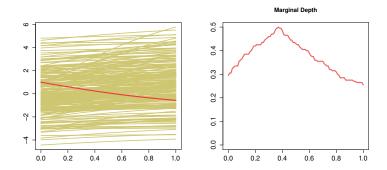
Other depth measures Depth for complex data

Higher Order Integrated Depth



Depth for complex data

Higher Order Integrated Depth



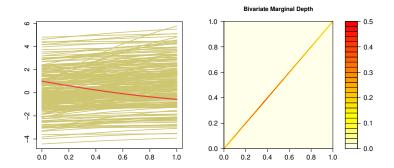
イロト イポト イヨト イヨト

Other depth measures Depth for complex data

イロト イポト イヨト イヨト

æ

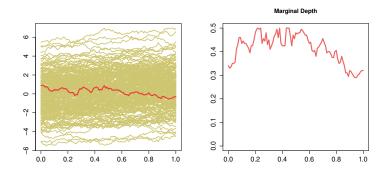
Higher Order Integrated Depth



Other depth measures Depth for complex data

A D > A B > A B > A B

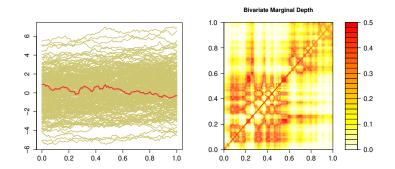
Higher Order Integrated Depth



Other depth measures Depth for complex data

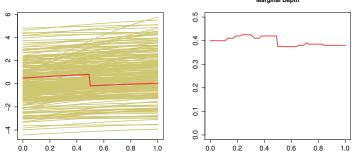
A D > A B > A B > A B

Higher Order Integrated Depth



Other depth measures Depth for complex data

Higher Order Integrated Depth

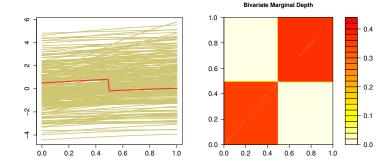


Marginal Depth

イロト イポト イヨト イヨト

Other depth measures Depth for complex data

Higher Order Integrated Depth

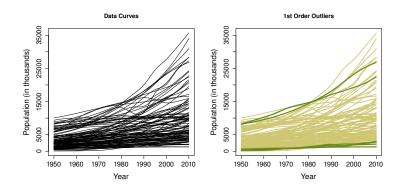


イロト イポト イヨト イヨト

3

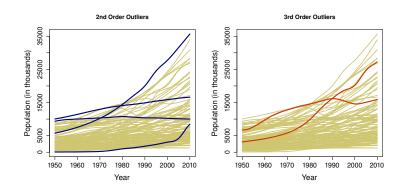
Other depth measures Depth for complex data

Example: World Population Growth

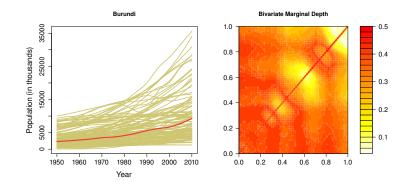


Other depth measures Depth for complex data

Atypical Curves of Higher Order



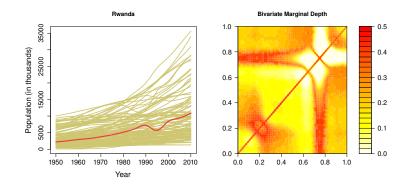
Burundi



イロト イポト イヨト イヨト

Other depth measures Depth for complex data

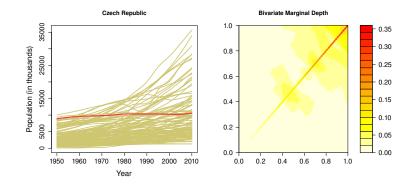
Rwanda



イロト イポト イヨト イヨト

Other depth measures Depth for complex data

Czech Republic



イロト イポト イヨト イヨト

Other depth measures Depth for complex data

Conclusions

Data depth is

- easy to understand (i.e. extremely popular);
- promises many applications; but also
- computationally intensive;
- with isolated and underdeveloped theory.

PRIMUS/17/SCI/03 Advanced Geometric Methods in Statistics 2018–2020

GeMS.karlin.mff.cuni.cz

Other depth measures Depth for complex data

Selected Literature

David L. Donoho and Miriam Gasko. Breakdown properties of location estimates based on halfspace depth and projected outlyingness. *Ann. Statist.*, 20(4):1803–1827, 1992.

Regina Y. Liu. On a notion of simplicial depth. *Proc. Natl. Acad. Sci. U.S.A.*, 85(6):1732–1734, 1988.

- **Regina Y. Liu, Jesse M. Parelius, and Kesar Singh.** Multivariate analysis by data depth: descriptive statistics, graphics and inference. *Ann. Statist.*, 27(3):783–858, 1999.
- Stanislav Nagy, Irène Gijbels, and Daniel Hlubinka. Depth-based recognition of shape outlying functions. J. Comput. Graph. Statist., 26(4):883–893, 2017.

Peter J. Rousseeuw and Ida Ruts. The depth function of a population distribution. *Metrika*, 49(3):213–244, 1999.

John W. Tukey. Mathematics and the picturing of data. In *Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2,* pages 523–531. Canad. Math. Congress, Montreal, Que., 1975.

Yijun Zuo and Robert Serfling. General notions of statistical depth function. *Ann. Statist.*, 28(2):461–482, 2000.

Yijun Zuo and Robert Serfling. Structural properties and convergence results for contours of sample statistical depth functions. *Ann. Statist.*, 28(2):483–499, 2000.