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Point estimation
Data visualisation
L-estimation and testing

Univariate Statistical Model

A random sample X1, . . . ,Xn of univariate observations (✕)

Observations

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Observations

D
e

n
s
it
y

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Point estimation
Data visualisation
L-estimation and testing

Univariate Statistical Model

X1, . . . ,Xn ∼ P ∈ P (R) with a density

Observations

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Observations

D
e

n
s
it
y

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions
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Location Estimation: Mean

Mean EX1 =
∫
R

x dP(x) estimated by 1/n ∑n
i=1 Xi
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Location Estimation: Median

Sample median : the middle-most observation X(n/2)
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Quantiles for Univariate Data

q(0.5) = sup{x ∈ R : P((−∞,x])≤ 0.5}
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Quantiles for Univariate Data

q(0.25) = sup{x ∈ R : P((−∞,x])≤ 0.25}
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Quantiles for Univariate Data

q(0.75) = sup{x ∈ R : P((−∞,x])≤ 0.75}
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Quantiles for Univariate Data

IQR = q(0.75)−q(0.25)
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Boxplot

Quantile-based visualisation tool (Tukey, 1969)

Observations
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Point estimation
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Boxplot

Quantile-based visualisation tool (Tukey, 1969)

Observations
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L-estimators

Central part of the data

Observations
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L-estimators

L-statistics : Functions of order statistics (trimmed mean)

Observations
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Scale Curve

s : [0,1/2]→ [0,∞) : t 7→ q(1− t)−q(t)
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Scale Curve

s : [0,1/2]→ [0,∞) : t 7→ q(1− t)−q(t)
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Data visualisation
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Outlier

Contaminate the dataset with an error Xn+1 = 1

Observations
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Outlier

Mean and median of the contaminated data

Observations
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Extensions

Point estimation
Data visualisation
L-estimation and testing

Severe Outlier

Contaminate with Xn+1 = 10

Observations
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Severe Outlier

Mean and median of the contaminated data
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Severe Outlier

Mean and median of the contaminated data
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Boxplots

Boxplot of the original data

Observations
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Boxplot of the contaminated data
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Rank Tests: Two Sample Problem

Let X1, . . . ,Xn ∼ P and Y1, . . . ,Ym ∼ Q be independent univariate
random samples (no ties). Test

H0 : P = Q against H1 : P 6= Q.

Wilcoxon’s rank sum test (Wilcoxon, 1945):

Pool the two samples into Z1, . . . ,Zn+m and rank these
observations (1 through n+m).

Add up the ranks of those observations which came from the
sample from P. Denote by R.

Reject H0 if R is either too small, or too large.
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Extensions

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 5

R = 17 (range from 15 to 40), p-value 0.03
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Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

t 7→ (qX (t),qY (t))
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Q-Q Plot

Quantile-versus-quantile plot (Gnanadesikan and Wilk, 1968)

t 7→ (qX (t),qY (t))
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Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 5

R = 17 (range from 15 to 40), p-value 0.03
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Extensions

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(2,1),n = m = 15

R = 143 (range from 120 to 345), p-value 0.00

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observations

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quantiles of X

Q
u

a
n

ti
le

s
 o

f 
Y

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Point estimation
Data visualisation
L-estimation and testing

Wilcoxon’s Rank Sum Test: Illustration

X ∼ B(1,2),Y ∼ B(1,2),n = m = 15

R = 220 (range from 120 to 345), p-value 0.62

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observations

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quantiles of X

Q
u

a
n

ti
le

s
 o

f 
Y

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Point estimation
Data visualisation
L-estimation and testing

Summary: Ranks and Orders

In R, rank and order statistics enable:

effective data visualisation (Q-Q plot);

outlier detection (boxplot);

construction of robust estimators (L-statistics);

non-parametric data analysis (rank tests).

All thanks to the linear ordering on the sample space.
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

−4 −2 0 2 4

−
4

−
2

0
2

4

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

−4 −2 0 2 4

−
4

−
2

0
2

4

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

−4 −2 0 2 4

−
4

−
2

0
2

4
*

*

*

−
4

−
2

0
2

4

** *

−4 −2 0 2 4

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Multivariate Data

How to order multivariate data ?

2 4 6 8 10

2
4

6
8

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Data Depth

For a random variable X ∼ P ∈ P
(

R
d
)

, consider the depth of x ∈ R
d

w.r.t. P
D : Rd ×P

(

R
d
)

→ [0,1] : (x ,P) 7→ D(x ,P).
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Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Halfspace Depth

Halfspace depth (Tukey, 1975) of an observation in R
d

hD(x ;P) = inf
H∈H (x)

P (H) .
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Halfspace Depth

hD (x ;Pn) = min
# of observations in a halfspace that contains x

n
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Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Brief History of hD (in Statistics)

1955 Idea with minimal halfspaces first used by Hodges;

1975 Tukey proposes hD as a visualisation tool;

1982 Donoho studies hD in his Ph.D. thesis;

1992 depth introduced in AoS (Donoho and Gasko, 1992);

1999 Rousseeuw and Ruts study hD in full generality;

2000 Zuo and Serfling provide a general framework for the depth.
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Depth Region

hDα(P) = {x ∈ R
d : hD(x ;P)≥ α}
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The depth and its properties
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Depth Contour

Topological boundary of hDα(P)
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Halfspace Median

Point(s) at which the depth hD(·;P) is maximized over Rd
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Elementary Properties

It holds true that

hD(x ;P) is well defined for any x ∈ R
d and P ∈ P

(

R
d
)

;

hD(x ;P) ∈ [0,1];

a halfspace median always exists ;
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Minimizing Halfspace

The minimizing halfspace may not be unique
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Minimizing Halfspace

The minimizing halfspace may not exist
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The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Assumption 1: Smoothness (S)

P(∂H) = 0 for each halfspace H
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Assumption 2: Contiguous Support (C)

The mass of P cannot be divided by a slab of zero probability (Mizera

and Volauf, 2002)
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Further Properties

For P that satisfies (S)

hD(x ;P) ∈ [0,1/2];

a minimizing halfspace exists at any x ∈ R
d ;

if (C) is also true, the halfspace median is unique .
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Affine Invariance

For any A ∈ R
d×d non-singular and b ∈ R

d

hD(x ;PX ) = hD(Ax +b;PAX+b).
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Maximality

If X is symmetric (i.e. PX = P−X ), then

hD(0;P) = sup
x∈Rd

hD(x ;P).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Maximality

If X is symmetric (i.e. PX = P−X ), then

hD(0;P) = sup
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(Semi-)Continuity

Theorem (Mizera and Volauf, 2002)

For any xν → x in R
d and Pν

w−−−→
ν→∞

P in P
(

R
d
)

limsupν→∞hD(xν;Pν)≤ hD(x ;P).

In particular,
limsupν→∞hD(xν;P)≤ hD(x ;P).

If P satisfies (S) then also

lim
ν→∞

hD(xν;Pν) = hD(x ;P).
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Robustness

Halfspace median is a robust estimator
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Sample Version Consistency

Theorem (Donoho and Gasko, 1992)

For any P ∈ P
(

R
d
)

almost surely

lim
n→∞

sup
x∈Rd

|hD(x ;Pn)−hD(x ;P)|= 0.

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Vanishing at Infinity

Theorem (Donoho and Gasko, 1992)

For any P ∈ P
(

R
d
)

lim
‖x‖→∞

hD(x ;P) = 0.
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Properties of Depth Regions

For each α > 0 it holds true that (Rousseeuw and Ruts, 1999)

hDα(P) =
⋂{H ∈ H : P(H)> 1−α};

hDα(P) is closed ;

hDα(P) is bounded ;

hDα(P) is convex .

hD(·;P) is a quasi-concave function for any P.
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Quasi-Concavity

hD is always quasi-concave , i.e. for each α ∈ [0,1]

{

x ∈ R
d : hD(x ;P)≥ α

}

is a convex set
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Consistency of Depth Regions

Consider the mapping

α 7→
{

x ∈ R
d : hD(x ;P)≥ α

}
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Properties of Depth Regions

Convex sets are equipped with the Hausdorff distance dH .

Theorem (Dyckerhoff, 2017+)

Let (S) and (C) be true for P. Then the mapping

α 7→ hDα(P)

is continuous. Further, for any α

dH (hDα(Pn),hDα(P))
a.s.−−−→

n→∞
0.

The previous results of Zuo and Serfling (2000b) are not correct!
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Asymptotic Normality

√
n hD(x ;Pn) is asymptotically normal

⇐⇒ hD(x ;P) is realised by a single halfspace H ∈ H (Massé, 2004)
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Asymptotic Normality

√
n hD(x ;Pn) is asymptotically normal

⇐⇒ the contour of hD(·;P) is smooth at x (Gijbels and Nagy, 2016)
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√
n hD(x ;Pn) is asymptotically normal

⇐⇒ the contour of hD(·;P) is smooth at x (Gijbels and Nagy, 2016)
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Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours
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Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours
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Population Depth: Elliptically Symmetric Distributions

Elliptically symmetric distributions have elliptic depth contours

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Population Depth: Uniform Distribution on a Square

Uniform distribution on a simple convex body
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Data Ordering

Depth induces a centre - outward ordering of points
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Halfspace Median

Point(s) that maximize the depth over Rd
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Bagplot: A Multivariate Boxplot

Central bag: 50% deepest observations (Rousseeuw et al., 1999)
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Multivariate L-statistics

Depth-trimmed mean (Fraiman and Meloche, 1999)

n

∑
i=1

Xi I(hD(Xi ;Pn)≥ α)/
n

∑
i=1

I(hD(Xi ;Pn)≥ α)

2 4 6 8 10

2
4

6
8

−2 0 2 4

−
3

−
2

−
1

0
1

2
3

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

The depth and its properties
Applications: non-parametric statistics in Euclidean spaces
Difficulties and open problems

Scale Curve

Volume of the depth region (Liu et al., 1999)

s : [0,1]→ [0,∞) : α 7→ λ(hDα(P))
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Multivariate Rank Tests: Two Sample Problem

Let X1, . . . ,Xn ∼ P and Y1, . . . ,Ym ∼ Q be independent multivariate
random samples. Test

H0 : P = Q against H1 : P 6= Q.

Wilcoxon’s rank sum test (Liu and Singh, 1993):

Pool the two samples into Z1, . . . ,Zn+m and rank these
observations by their depth (1 through n+m).

Add up the ranks of those observations which came from the
sample from P. Denote by R.

Reject H0 if R is either too small, or too large.
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D-D Plots: Multivariate Q-Q Plots

Replace quantiles by depth in Q-Q plots (Liu et al., 1999)
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Classification

Classify a new observation into one of the groups (Li et al., 2012)
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D-D Plots: Multivariate Q-Q Plots

D-D plots with unequal scatters
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Computational Complexity of hD

best known exact algorithms have complexity O(log(n)nd−1)
(Rousseeuw and Struyf, 1998);

feasible computation only for n ≤ 1000 and d ≤ 5;

approximations of hD (Dyckerhoff, 2004)

hD(x ;P) = inf
u∈Sd−1

hD(〈x ,u〉 ;P〈X ,u〉)≈ min
j=1,...,N

hD(〈x ,Uj〉 ;P〈X ,Uj 〉).

choice of the parameter N and the distribution of U (Nagy, 2018+).
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Ties

With increasing d the number of depth-ties increases
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Some Open Problems

Little is known about

uniform distributional asymptotics;

higher order asymptotics;

detection of rough points ;

finite/large sample properties of depth-based tests and
estimators;

population depth and its properties.
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Simplicial Depth

Simplicial depth (Liu, 1988) of an observation in R
d

sD(x ;P) = P(x ∈ S(X1, . . . ,Xd+1)) .
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Simplicial Depth

sD(x ;Pn) =

(

n

d +1

)−1

∑
1≤Xi1<···<Xid+1≤n

I
(

x ∈ S(Xi1 , . . . ,Xid+1)
)

.
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Unimodality / Quasi-Concavity

Proper depth is intended to be unimodal and quasi-concave

−4 −2 0 2 4

−
2
0

−
1
0

−
5

0
5

1
0

1
5

−6 −4 −2 0 2 4 6

−
2

−
1

0
1

2

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Other depth measures
Depth for complex data

Unimodality / Quasi-Concavity
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Local Depths

Relaxation of unimodality leads to local depths
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Likelihood Depth

Multivariate density estimator (Fraiman and Meloche, 1999)
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Local Halfspace Depth

Localization of hD (Paindaveine and Van Bever, 2013)
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Local Halfspace Depth

Localization of hD (Paindaveine and Van Bever, 2013)
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Further Extensions

Depths for more exotic data — variants of the halfspace and
simplicial depth :

for directional data (data in S
d−1) (Liu and Singh, 1992);

for data on graphs and trees (Small, 1997);

for infinite-dimensional (functional) data (Fraiman and Muniz, 2001);

for general metric spaces (Carrizosa, 1996);

in regression problems (Rousseeuw and Hubert, 1999);

. . .

Many proposals, many tests, many simulations. No sufficient
comprehensive theory.
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Functional Data

X ∼ P ∈ P (C ) and X1, . . . ,Xn i.i.d. from P. Consider the depth of
functional observations w.r.t. P (or Pn)

D : C ×P (C )→ [0,1].
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Integrated Depths

Fraiman and Muniz (2001), Nagy et al. (2016)

FD (x ;P) =
∫ 1

0
hD1(x(t),Pt)d t, hD1(u;Q) = 1/2−|1/2−FQ(u)| .
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Data Contamination

Consider contaminated functional data . Does the depth recognize
the outlier?
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Data Contamination

Integrated depth (Fraiman and Muniz, 2001)

FD (x ;P) =
∫ 1

0
hD (x(t);Pt) d t
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Integrated Depth

Integrated depth (Fraiman and Muniz, 2001)

FD (x ;P) =
∫ 1

0
hD (x(t);Pt) d t
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Depth with Derivatives

Integrated depth of differentiable functions (Hlubinka et al., 2015)

FD(2) (x ;P) =
∫ 1

0
hD

((

x(t),x ′(t)
)

;
(

Pt ,P
′
t

))

d t
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Depth with Derivatives without Derivatives

Second order integrated depth (Nagy et al., 2017)

FD 2 (x ;P) =
∫ 1

0

∫ 1

0
hD ((x(t),x(s)) ; (Pt ,Ps)) d t ds
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Higher Order Integrated Depth

Second order integrated depth (Nagy et al., 2017)

FD 2 (x ;P) =
∫ 1

0

∫ 1

0
hD ((x(t),x(s)) ; (Pt ,Ps)) d t ds
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Higher Order Integrated Depth

FD(2) (x ;P) =
∫ 1

0
hD

((

x(t),x ′(t)
)

;
(

Pt ,P
′
t

))

d t

FD 2 (x ;P) =
∫ 1

0

∫ 1

0
hD ((x(t),x(s)) ; (Pt ,Ps)) d t ds

Theorem (Nagy et al., 2017)

hD
((

x(t),x ′(t)
)

;
(

Pt ,P
′
t

))

= lim
h→0

hD ((x(t),x(t +h)) ; (Pt ,Pt+h)) .

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Other depth measures
Depth for complex data

Higher Order Integrated Depth
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Higher Order Integrated Depth
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Higher Order Integrated Depth
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Higher Order Integrated Depth
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Example: World Population Growth
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Atypical Curves of Higher Order
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Burundi
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Rwanda
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Czech Republic
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Conclusions

Data depth is

easy to understand (i.e. extremely popular);

promises many applications ; but also

computationally intensive;

with isolated and underdeveloped theory .

PRIMUS/17/SCI/03
Advanced Geometric Methods in Statistics

2018–2020

GeMS.karlin.mff.cuni.cz

Stanislav Nagy Data Depth



Motivation: Order Statistics, Quantiles and Ranks
Halfspace Depth: Quantiles for Multivariate Data

Extensions

Other depth measures
Depth for complex data

Selected Literature

David L. Donoho and Miriam Gasko. Breakdown properties of location estimates based on
halfspace depth and projected outlyingness. Ann. Statist., 20(4):1803–1827, 1992.

Regina Y. Liu. On a notion of simplicial depth. Proc. Natl. Acad. Sci. U.S.A.,
85(6):1732–1734, 1988.

Regina Y. Liu, Jesse M. Parelius, and Kesar Singh. Multivariate analysis by data depth:
descriptive statistics, graphics and inference. Ann. Statist., 27(3):783–858, 1999.

Stanislav Nagy, Irène Gijbels, and Daniel Hlubinka. Depth-based recognition of shape
outlying functions. J. Comput. Graph. Statist., 26(4):883–893, 2017.

Peter J. Rousseeuw and Ida Ruts. The depth function of a population distribution. Metrika,
49(3):213–244, 1999.

John W. Tukey. Mathematics and the picturing of data. In Proceedings of the International
Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531. Canad.
Math. Congress, Montreal, Que., 1975.

Yijun Zuo and Robert Serfling. General notions of statistical depth function. Ann. Statist.,
28(2):461–482, 2000.

Yijun Zuo and Robert Serfling. Structural properties and convergence results for contours
of sample statistical depth functions. Ann. Statist., 28(2):483–499, 2000.

Stanislav Nagy Data Depth


	Motivation: Order Statistics, Quantiles and Ranks
	Point estimation
	Data visualisation
	L-estimation and testing

	Halfspace Depth: Quantiles for Multivariate Data
	The depth and its properties
	Applications: non-parametric statistics in Euclidean spaces
	Difficulties and open problems

	Extensions
	Other depth measures
	Depth for complex data


