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Motivation – Data description

Monthly measurements (March-October 2015) of the
potassium chloride pH
Site located near Brno, Czech Republic
Mean altitude 526,8 m, mean slope 2,7◦, surface oriented
to southwest
The transect contains 11 sampling points (on a straight
line), 3 meters from each other
Central sampling point, ecotone, divides the site into field
and forest part
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Functional geostatistics

Let (Ω,F ,P) be a probability space, let H be a separable
Hilbert space (e.g. L2 space) endowed with inner product
〈, 〉 and induced norm ||.|| =

√
〈, 〉 defined on H.

We call functional random variable a measurable function
X : Ω→ H, its realisation x is a functional datum.
Let {Xs, s ∈ D ⊂ Rd} be a functional random field.
Functional dataset Xs1 , . . . ,Xsn is a collection of n
observations of the random field related to locations
s1, . . . , sn ∈ D
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Modelling spatial observations - drift

Functional observations Xs of non-stationary random field
{Xs, s ∈ D ⊂ Rd} can be expressed as

Xs = ms + δs.

Drift ms can be expressed through a linear model

ms(t) =
L∑

l=0
βl(t)fl(s), s ∈ D, t ∈ T ,

βl(t), l = 0, . . . ,L, are unknown functional coefficients
independent on the spatial location
fl(s), l = 0, . . . ,L, are known functions of spatial variable
s ∈ D, constant with respect to t ∈ T .



Introduction Functional geostatistics Inference for functional data Analysis of pH KCl Conclusion

Modelling spatial observations - residuals and
variogram

Let δs1 , . . . , δsn be a realization of zero-mean, second-order
stationary and isotropic residual process {δs, s ∈ D}
[Menafoglio, Secchi 2016]
Spatial correlation among residuals can be measured via
the semivariogram:

γ(h) =
1
2E[||δsi − δsj ||

2], si , sj ∈ D,h = ||si − sj ||.

The empirical semivariogram of process is

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)
||δsi − δsj ||

2,

The empirical variogram is defined as 2γ̂(h).
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Permutation tests for comparison of two functional
populations

Let εsi(1), i = 1, . . . ,n1, and εsi(2), i = 1, . . . ,n2, be two
random independent samples of functions in L2.
Test of hypothesis

H0 : E(εs(1)) = E(εs(2)) and Var(εs(1)) = Var(εs(2)), against

H1 : E(εs(1)) 6= E(εs(2)) or Var(εs(1)) 6= Var(εs(2)).

using test statistics measuring L2 distance between two
sample means and variances:

TIm =
1
|I|

∫
|I|

[ε̄s(1)(t)− ε̄s(2)(t)]2dt,

TIv =
1
|I|

∫
|I|

[V̂ar[εs(1)(t)]− V̂ar[εs(2)(t)]]2dt.
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Permutation tests for comparison of two functional
populations

The procedure adapted from [Pini, Vantini 2017] is
interval-wise; aims at identifying parts of functional domain
where the two groups of data significantly differ.
Let I ⊆ T be an arbitrary interval of form (t1, t2) or its
complement T\(t1, t2), where (t1, t2) ⊆ T . Let pI be the
p-value of functional test

HI0 : E(εs(1))
I = E(εs(2))

I and Var(ε(1))
I = Var(ε(2))

I , against

HI1 : E(εs(1))
I 6= E(εs(2))

I or Var(ε(1))
I 6= Var(ε(2))

I .

The adjusted p-value of the test is, for each t ∈ T , defined
as

p(t) = sup
I3t

pI ,∀ t ∈ T .
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Testing for significance in spatial regression model
with functional response

Functional-on-scalar linear model for the drift:

Xs(t) =
L∑

l=0
βl(t)fl(s) + δs(t), s ∈ D, t ∈ T ,

Residuals δs(t), t ∈ T zero-mean, independent and identically
distributed random functions with finite total variance.
We aim at testing the hypothesis:

H0 : β1(t) = . . . = βL(t) = 0 , ∀l ∈ {1, . . . ,L}, ∀t ∈ T , against

H1 : βl(t) 6= 0 for some l ∈ {1, . . . ,L} and some t ∈ T ,
using test statistic

T0 =

∫
[(Cβ̂(t))′[C(F ′Σ−1F)C′]−1(Cβ̂(t))]dt.
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Freedman and Lane permutation scheme

1 Estimate residuals of the reduced model (model under H0).
2 Permute residuals of the reduced model.
3 Compute permuted responses through the reduced model

and permuted residuals.
4 Estimate parameters of the full model from permuted

responses.
5 Calculate the test statistic T0.

The global p-value of the test is obtained as the proportion of
permutations leading to higher value of test statistic than the
one of observed data.



Introduction Functional geostatistics Inference for functional data Analysis of pH KCl Conclusion

Functional observations

Data preprocessed using
B-spline basis (cubic splines,
knots placed at data points,
10 basis functions)
Observations were smoothed
using PENSSE (penalized
residual sum of squares)
criterion
Penalisation parameter
selected via generalized
cross-validation (λ = 10)

The data are treated as functions of time distributed in space.
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Exploring spatial dependence among observations
Drift modelled as:

Xs(t) = β0(t) + β1(t) · soil(s) + δs(t),

where soil(s) is the indicator function such that:

soil(s) =

{
0 for s ∈ {−15,−12,−9,−6,−3},
1 for s ∈ {3,6,9,12,15}
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Testing for differences in field and forest residuals

Let δsi(1), i = 1, . . . ,5, and δsi(2), i = 1, . . . ,5, denote the
residuals from field and forest soil, respectively. The aim is to
test the hypothesis

H0 : E(δs(1)) = E(δs(2)) and Var(δs(1)) = Var(δs(2)), against

H1 : E(δs(1)) 6= E(δs(2)) or Var(δs(1)) 6= Var(δs(2)).
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Model for data with different variances

Although the residuals were spatially independent, the test
for two population showed that was still some influence of
the soil type with respect to variance.
Instead, a new model is proposed:

Xs(j)(t) = β0(t) + β1(t) · soil(s) + δs(j)(t), j = 1,2,

soil(s) =

{
0 for s ∈ {−15,−12,−9,−6,−3},
1 for s ∈ {3,6,9,12,15}

where δs(j)(t) = σ(j)εs(t), j = 1,2,
σ(j) is a standard deviation of residuals changing according
the type of soil,
εs(t) are spatially independent identically distributed (and
thus permutable) residuals.
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Model for data with different variances

The drift is estimated via weighted least squares with
diagonal weight matrix:

W = diag
{

1
σ̂(1)

, . . . ,
1
σ̂(1)︸ ︷︷ ︸

5

,
1
σ̂(2)

, . . . ,
1
σ̂(2)︸ ︷︷ ︸

5

}
.

The variances σ̂2
(j), j = 1,2, estimated from variograms of

partial models

Xs(j)(t) = β0(j)(t) + δs(j), j = 1,2,

for field and forest part separately, as a sill of each
variogram.
The estimates are σ̂2

(1) = 0,9452 and σ̂2
(2) = 0,1684.

The variance of field soil residuals is more than 5 times
higher than of forest soil residuals.
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Model for data with different variances

Let εsi(1), i = 1, . . . ,n1, and εsi(2), i = 1, . . . ,n2, denote the
residuals from field and forest soil, respectively. We test the
hypothesis

H0 : E(εs(1)) = E(εs(2)) and Var(εs(1)) = Var(εs(2)), against

H1 : E(εs(1)) 6= E(εs(2)) or Var(εs(1)) 6= Var(εs(2)).
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Testing for significance of regression parameters

In model

Xs(j)(t) = β0(t) + β1(t) · soil(s) + σ(j)εs(t), j = 1,2,

we test the null hypothesis:

H0 : β1 = 0, against H1 : β1 6= 0,
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Modified permutation scheme

Initial step: estimate σ̂2
(j), j = 1,2, from the partial models.

1 Estimate residuals δ̂s(j)(t) of the reduced model
Xs(j)(t) = β0(t) + δs(j)(t), j = 1,2.

2 Divide δ̂s(j)(t) by corresponding standard deviation
σ̂(j), j = 1,2→ exchangeable residuals ε̂s(t).

3 Permute ε̂s(t).
4 Compute permuted responses X ∗s(j)(t) through reduced

model and permuted residuals δ̂∗s(j)(t) = σ̂(j)ε̂
∗
s(t), j = 1,2.

5 Estimate parameters of the full model from permuted
responses X ∗s(j)(t), j = 1,2.

6 Calculate the test statistic T0.
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Conclusion

A total number of 1000 permutation was performed and the
resulting global p-value = 0 was computed.
The null hypothesis is rejected on the significance level
α = 0,05. The type of soil significantly affects the
potassium chloride pH.
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Future steps

Extend the methodology to more complex spatial
structures.
Develop a functional test for spatial dependence.
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