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Introduction
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Motivation — Data description

@ Monthly measurements (March-October 2015) of the
potassium chloride pH

@ Site located near Brno, Czech Republic

@ Mean altitude 526, 8 m, mean slope 2, 7°, surface oriented
to southwest

@ The transect contains 11 sampling points (on a straight
line), 3 meters from each other

@ Central sampling point, ecotone, divides the site into field
and forest part

pH Kcl, July 2015
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Functional geostatistics

@ Let (2, F,P) be a probability space, let H be a separable
Hilbert space (e.g. L2 space) endowed with inner product
(,) and induced norm ||.|| = \/{(,) defined on H.

@ We call functional random variable a measurable function
X : Q — H, its realisation x is a functional datum.

@ Let {Xs,s € D c R?} be a functional random field.

@ Functional dataset A5, , ..., X5, is a collection of n
observations of the random field related to locations
S1,...,8p €D
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Modelling spatial observations - drift

@ Functional observations X5 of non-stationary random field
{Xs,s € D C RY) can be expressed as

Xs = ms +(53

@ Drift mg can be expressed through a linear model

L
ms(t) =Y B(t)fi(s),s€D,teT,

1=0

@ pi(t),l =0,...,L, are unknown functional coefficients
independent on the spatial location

e fi(s),/ =0,...,L, are known functions of spatial variable

s € D, constant with respecttot € T.
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Modelling spatial observations - residuals and

variogram

@ Letds,,...,ds, be a realization of zero-mean, second-order
stationary and isotropic residual process {ds,s € D}
[Menafoglio, Secchi 2016]

@ Spatial correlation among residuals can be measured via
the semivariogram:

’
v(h) = éE[||6s, — 0|1°],si,8; € D,h = ||s; — sj]|.

@ The empirical semivariogram of process is

apy 1 2
(if)eN(h)

@ The empirical variogram is defined as 25(h).
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Permutation tests for comparison of two functional

populations

@ Leteg 1),/ =1,...,ny,and e52),/ = 1,...,nz, be two
random independent samples of functions in L2.
@ Test of hypothesis

Ho : E(es(1)) = E(es(2)) and Var(eg(1)) = Var(eg(2)), against

Hi : E(es(1)) # E(es(z)) or Var(es(r)) # Var(esz))-

@ using test statistics measuring L? distance between two
sample means and variances:
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Permutation tests for comparison of two functional

populations

@ The procedure adapted from [Pini, Vantini 2017] is
interval-wise; aims at identifying parts of functional domain
where the two groups of data significantly differ.

@ LetZ C T be an arbitrary interval of form (t,1,) or its
complement T\(t;,1,), where (t;,t,) C T. Let p” be the
p-value of functional test

HE - E(e$<1))I = E(és(g))I and Var(em)l = Var(qg))z, against

HY : Eles(1))” # Eles@)” or Var(e(n))” # Var(e))”

@ The adjusted p-value of the test is, for each t € T, defined
as

p(t) = supp?,VteT.
ot



Inference for functional data
[e]e] o]

Testing for significance in spatial regression model

with functional response

Functional-on-scalar linear model for the drift:
L
Xs(t) =D B(t)i(s) +0s(t),s €Dt €T,
=0

Residuals ds(t),t € T zero-mean, independent and identically
distributed random functions with finite total variance.
We aim at testing the hypothesis:

Ho:Bi(t)=...=p(t)=0,Vle{1,...,L}, Vt € T, against
Hq: Bi(t) #0 for some | € {1,...,L} and some t € T,

using test statistic

To = /[(CB(t))'[C(F'Z_1F)C’]_1(CB(t))]df-
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Freedman and Lane permutation scheme

@ Estimate residuals of the reduced model (model under Hy).
© Permute residuals of the reduced model.

© Compute permuted responses through the reduced model
and permuted residuals.

© Estimate parameters of the full model from permuted
responses.

© Calculate the test statistic T.
The global p-value of the test is obtained as the proportion of

permutations leading to higher value of test statistic than the
one of observed data.
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Functional observations

@ Data preprocessed using
B-spline basis (cubic splines,
knots placed at data points,

10 basis functions)

@ Observations were smoothed
using PENSSE (penalized
residual sum of squares)
criterion

@ Penalisation parameter
selected via generalized
cross-validation (A = 10)

The data are treated as functions of time distributed in space.

pH KCl observations, transect 1
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Exploring spatial dependence among observations

Drift modelled as:
Xs(t) = Bo(t) + B1(t) - soil(s) + ds(t),
where soil(s) is the indicator function such that:

soil(s) = 0 forse{-15,-12,—-9, -6, -3},
| 1 forse{3,6,9,12,15}
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Exploring spatial dependence among observations

Drift modelled as:
Xs(t) = Bo(t) + B1(t) - soil(s) + ds(t),
where soil(s) is the indicator function such that:

soil(s) = 0 forse{-15,-12,—-9, -6, -3},
| 1 forse{3,6,9,12,15}
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Testing for differences in field and forest residuals

Let 6,1,/ = 1,...,5,and dg,2),/ = 1,...,5, denote the
residuals from field and forest soil, respectively. The aim is to
test the hypothesis

Ho : E(0s(1)) = E(ds(2)) and Var(dg(1)) = Var(ds(z)), against

Hi : E(ds(1)) # E(ds(2)) or Var(ds(1)) # Var(ds(2))-
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Testing for differences in field and forest residuals

Let 6,1,/ = 1,...,5,and dg,2),/ = 1,...,5, denote the
residuals from field and forest soil, respectively. The aim is to
test the hypothesis

Ho : E(ds(1)) = E(ds(2)) and Var(ds(1)) = Var(ds(z)), against

Hi : E(ds(1)) # E(ds(2)) or Var(ds(1)) # Var(ds(2))-

Mean : Functional Data Mean : Adjusted p-values

00 02 04

00 02 04 06 08 10
L L L L L L

04

08




Analysis of pH KCI
000®00000

Testing for differences in field and forest residuals

Let ds,(1),/ = 1,...,5,and dg,2),/ = 1,...,5, denote the
residuals from field and forest soil, respectively. The aim is to
test the hypothesis

Ho : E(0s(1)) = E(ds(2)) and Var(dg(1)) = Var(ds(z)), against
Hy = E(0s(1)) # E(ds(2)) or Var(ds(1)) # Var(ds(2))-

Variance : Functional Data Variance : Adjusted p-values
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Model for data with different variances

@ Although the residuals were spatially independent, the test
for two population showed that was still some influence of
the soil type with respect to variance.

@ Instead, a new model is proposed:
Xs()(t) = Bo(t) + B1(t) - s0il(s) + ds(7)(t),/ = 1,2,
o~ | 0 forse{-15,-12,-9,-6,—-3},
S"”(S)_{ 1 fors e {3,6,9,12,15}
@ where (55(1)(1') = U(j)es(t),j =1,2,

@ o(; is a standard deviation of residuals changing according
the type of soil,

@ ¢5(t) are spatially independent identically distributed (and
thus permutable) residuals.
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Model for data with different variances

@ The drift is estimated via weighted least squares with
diagonal weight matrix:

W_diag{ 1 11 1 }
oy oy Gy o) )
5 5

@ The variances &6.), j = 1,2, estimated from variograms of
partial models

Xs(y (t) = Bogy(t) + ds(y,/ = 1,2,

for field and forest part separately, as a sill of each
variogram.

® The estimates are 67, = 0,9452 and 57, = 0,1684.

@ The variance of field soil residuals is more than 5 times
higher than of forest soil residuals.
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Model for data with different variances

Let €51y, =1,...,n1,@and eg2),/ = 1,..., N2, denote the
residuals from field and forest soil, respectively. We test the
hypothesis

Ho : E(Es(1)) = E(Es(z)) and Var(es(1)) = V&I‘(Gs(g)), against

Hi : E(es(1)) # E(es(z)) or Var(eg(1)) # Var(es(2))-

Variance : Functional Data Variance : Adjusted p-values

00 02 04 06 08 10




Analysis of pH KCI
000000080

Testing for significance of regression parameters

In model
Xs(y (t) = Bo(t) + B1(t) - soil(s) + o(jyes(t),j = 1,2,
we test the null hypothesis:

Hoy : 81 =0, against Hy : 81 #0,



Analysis of pH KCI
000000008

Modified permutation scheme

Initial step: estimate 66),j = 1,2, from the partial models.
@ Estimate residuals d5(;(t) of the reduced model
Xs(y (1) = Bo(t) + dspy(1).J = 1,2.

@ Divide 4 (t) by corresponding standard deviation
)
5(),J = 1,2 — exchangeable residuals é(t).

© Permute &(t).
© Compute permuted responses s(/)( ) through reduced
model and permuted residuals 6;‘0)( ) =Gypés(t),j=1,2.

© Estimate parameters of the full model from permuted
responses s(j)( ),j=1,2.

© Calculate the test statistic Ty.
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Conclusion

@ A total number of 1000 permutation was performed and the
resulting global p-value = 0 was computed.

@ The null hypothesis is rejected on the significance level
a = 0,05. The type of soil significantly affects the
potassium chloride pH.

PH KCI observations, transect 1 pH KCI Drift
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Future steps

@ Extend the methodology to more complex spatial
structures.

@ Develop a functional test for spatial dependence.
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