
Floating bodies and approximation of convex
bodies by polytopes



a convex body K in Rn is compact convex set with non-empty
interior

a polytope P in Rn is the convex hull of finitely many points
x1, . . . , xN

[x1, . . . , xN ]

How well can a convex body be approximated by a polytope?
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(ii) a fixed number of facets = (n − 1)-dimensional faces

(iii) a fixed number of k-dimensional faces

We will concentrate on (i), the vertex case

Typically, in the literature

in (i) P is inscribed in K

in (ii) P is circumscribed to K
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2. Approximated in which sense ?

The symmetric difference metric

∆v (K , L) = voln

(
(K \ L) ∪ (L \ K )

)
= |(K \ L) ∪ (L \ K )|

= |K ∪ L| − |K ∩ L|

When K ⊂ L,
∆v (K , L) = |L| − |K |
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3. Want optimal dependence on the parameters involved

• the convex body K

• the dimension n

when the number of vertices of the approximating polytope is
prescribed

• we want the optimal dependence on the number of vertices

BEST APPROXIMATION
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Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ (called: C 2

+). Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K
deln−1 is a constant that depends only on n



Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ (called: C 2

+). Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K
deln−1 is a constant that depends only on n



Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ (called: C 2

+). Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K
deln−1 is a constant that depends only on n



Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ (called: C 2

+). Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K

deln−1 is a constant that depends only on n



Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ (called: C 2

+). Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K
deln−1 is a constant that depends only on n



Best Approximation for N large

∆v (K ,Pbest) = |K | − |Pbest|

∼ 1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1 1

N
2

n−1

Theorem (Mankiewicz&Schütt)

There is a numerical constant c > 0 such that

n − 1

n + 1

(
1

|Bn−1
2 |

) 2
n−1

≤ deln−1 ≤ (1+ c log n
n )

n − 1

n + 1

(
1

|Bn−1
2 |

) 2
n−1

deln−1 ∼ n

Affine surface area appears

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ(x)
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Affine surface area (Blaschke)

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ(x)

I Properties of the affine surface area

• is > 0 for C 2
+. E.g., as(Bn

2 ) = |∂Bn
2 |.

• is 0 for polytopes

• is an affine invariant

• there is an affine isoperimetric inequality(
as(K )

as(Bn
2 )

)n+1

≤
(
|K |
|Bn

2 |

)n−1
,

with equality iff K is an ellipsoid (Blaschke; Petty)
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Applications of affine surface area

- geometric tomography (Gardner etc.)

- PDEs (Lutwak+Oliker, Trudinger, Wang, etc.)

- asymptotic geometric analysis
(e.g., Blaschke-Santalo inequalities)

- affine curve evolution

(Andrews, Sapiro, Stancu,Tannenbaum, etc.)

I originally only defined for smooth bodies

Then: Leichtweiss, Lutwak, Meyer+Werner, Schütt+Werner,
Werner,.......
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The (convex) floating body (Barany+Larman, Schütt+Werner)

Let K be a convex body in Rn. Let δ > 0.
The (convex) floating body is the intersection of all halfspaces
H+ whose defining hyperplanes H cut off a set of volume δ of K .

Kδ =
⋂

|H−∩K |=δ

H+

H

H
+

δ
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Let K be a convex body in Rn. Let δ > 0.
The (convex) floating body is the intersection of all halfspaces
H+ whose defining hyperplanes H cut off a set of volume δ of K .

Kδ =
⋂

|H−∩K |=δ

H+

H

H
+

δ



The (convex) floating body (Barany+Larman, Schütt+Werner)
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Theorem (Schütt+Werner)

Let K be a convex body in Rn. Then

lim
δ→0

vol(K)− vol(Kδ)

δ
2

n+1

=

1

2

(
n + 1

vol(Bn−1
2 )

) 2
n+1
∫
∂K
κ(x)

1
n+1 dµ(x)

κ is the generalized Gaussian curvature

We see: affine invariance

Other application of the floating body: Data depth
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Let K be a convex body in Rn. Then

lim
δ→0

vol(K)− vol(Kδ)

δ
2

n+1

=
1

2

(
n + 1

vol(Bn−1
2 )

) 2
n+1
∫
∂K
κ(x)

1
n+1 dµ(x)

κ is the generalized Gaussian curvature

We see: affine invariance

Other application of the floating body: Data depth



Random approximation

Choose N points x1 . . . xN in K or on ∂K w.r. to a probability
measure P,

P =
m

|K |
or P =

µ

|∂K |

the convex hull [x1, . . . , xN ] of these points we call

RANDOM POLYTOPE

when chosen in K , not ALL points become vertices
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More generally:

f : ∂K → R+ strictly positive a.e. on ∂K ,
∫
∂K fdµ = 1

Pf = f µ

Choose N points x1, . . . xN w.r. to Pf on ∂K

As before we call their convex hull [x1, . . . , xN ] a random
polytope. Every point chosen becomes a vertex
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The expected volume of such a random polytope is

EN(∂K ,Pf ) =

∫
∂K
· · ·
∫
∂K

∣∣∣∣[x1, . . . , xN ]

∣∣∣∣dPf (x1) . . . dPf (xN)



Theorem (Schütt&Werner)

Let K be a convex body in Rn with sufficiently regular boundary.

lim
N→∞

|K | − EN(∂K ,Pf )(
1
N

) 2
n−1

=

cn

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

I when points are chosen in K , one only gets:

(
1
N

) 2
n+1

I

cn =
(n − 1)

n+1
n−1 Γ

(
n + 1 + 2

n−1

)
2(n + 1)!(voln−2(∂Bn−1

2 ))
2

n−1
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|K | − EN(∂K ,Pf ) ∼ cn

(
1

N

) 2
n−1
∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

I the optimal f which minimizes the right hand side is

fas =
κ

1
n+1∫

∂K κ
1

n+1 dµ

Putting this fas in the above formula, we get

I |K | − EN(∂K ,Pfas ) ∼ cn

(
1
N

) 2
n−1
(∫

∂K κ(x)
1

n+1 dµ(x)

) n+1
n−1

How do best and random approximation compare?
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(ii) a fixed number of facets = (n − 1)-dimensional faces

Typically, in the literature

in (i) P is inscribed in K

in (ii) P is circumscribed to K

These restrictions need to be dropped

Again: we concentrate on the vertex case
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Drop requirement that PN ⊂ K

Theorem (Ludwig, Schütt, Werner)

Let K be C 2
+. There is a constant c > 0 s.th. for all N large

enough there is a polytope P in Rn with at most N vertices s.th.

∆v (K ,P) ≤ c |K |
(

1

N

) 2
n−1

I the corresponding result for facets holds as well

I When P ⊂ K (Bronsteyn&Ivanov)

∆v (K ,P) = |K | − |P| ≤ c n |K |
(

1

N

) 2
n−1

• If we drop the restriction, we gain by a factor of dimension: n
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When P ⊂ K , we actually have

c1 n |K |
(

1

N

) 2
n−1

≤ ∆v (K ,P) = |K | − |P| ≤ c2 n |K |
(

1

N

) 2
n−1

Upper bound: Bronsteyn & Ivanov
Lower bound: Gordon, Reisner & Schütt



I lower bound in the general case

Theorem (Böröczky)

For every polytope PN with at most N vertices

∆v (Bn
2 ,PN)| ≥ c

n
|Bn

2 |
(

1

N

) 2
n−1

∆v (Bn
2 ,P) ≤ c |Bn

2 |
(

1

N
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n−1

GAP between lower and upper bound by a factor of dimension
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Theorem (Grote+Werner)

Let K be a convex body in Rn that is C 2
+. Let f : ∂K → R+ be a

continuous and strictly positive function with∫
∂K

f (x)dµ(x) = 1.

Then, for N sufficiently large, there exists a polytope Pf in Rn

having N vertices such that

∆v (K ,Pf ) ≤ aN−
2

n−1

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x),

where a ∈ (0,∞) is an absolute constant.
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dµ(x)

Comments

• The proof is via a random construction:
We choose at random points x1, . . . , xN with respect to Pf = f µ
on ∂K and approximate (1− c)∂K and re-adjust

• One gains by a factor of dimension if one allows arbitrarily
positioned polytopes

|K | − EN(∂K ,Pf ) ∼ n N−
2

n−1

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

• There is a gap between upper and lower bound by a factor of
dimension

• Assumption C 2
+ can be relaxed
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κ(x)

1
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as(K )

where
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1
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is the affine surface area of K . Then

∆v (K ,Pf1) ≤ aN−
2

n−1 as(K )
n+1
n−1



∆v (K ,Pf ) ≤ aN−
2

n−1

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

• Minimum on RHS is attained for the normalized affine surface
area measure with density

f1(x) =
κ(x)

1
n+1

as(K )

where

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ∂K (x)

is the affine surface area of K .

Then

∆v (K ,Pf1) ≤ aN−
2

n−1 as(K )
n+1
n−1



∆v (K ,Pf ) ≤ aN−
2

n−1

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

• Minimum on RHS is attained for the normalized affine surface
area measure with density

f1(x) =
κ(x)

1
n+1

as(K )

where

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ∂K (x)

is the affine surface area of K . Then

∆v (K ,Pf1) ≤ aN−
2

n−1 as(K )
n+1
n−1



∆v (K ,Pf1) ≤ aN−
2

n−1 as(K )
n+1
n−1



affine isoperimetric inequality
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voln(Bn
2 )

(n voln(Bn
2 ))

n+1
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≤ aN−
2

n−1 voln(K )

The latter is the above mentioned result by

Ludwig+Schütt+Werner: ∆v (K ,P) ≤ c N−
2

n−1 voln(K )
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