Floating bodies and approximation of convex
bodies by polytopes
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How well can a convex body be approximated by a polytope?
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2. Approximated in which sense ?

The symmetric difference metric

AJK.L) = vo|n<(K\L)u(L\K>) — (K \ L) UL\ K)
— |KUL| - |KNL|

When K C L,
Ay(K,L)=[L] - |K]|
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BEST APPROXIMATION
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Theorem (McClure&Vitale; Gruber)

Suppose K has a C?-boundary with everywhere positive Gauss
curvature £ (called: C2). Then

inf{A,(K, Pn)| Py C K and Py has at most N vertices}

lim )

N—ro0 5
Nn—1
i inf{|K| — |Pn|: Py C K and Py has at most N vertices}
= lim
N—o0 12

Nn—1

1 1 =
= —del,_1 (/ K(x)n d,u(x)>
2 oK

4 is the surface area measure on 0K
del,_1 is a constant that depends only on n
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Affine surface area appears

as(K) = [ w(x)71dp()
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Affine surface area (Blaschke)

as(K) = /8 () du(

» Properties of the affine surface area

e is >0 for C2. E.g., as(Bf) = |0B5|.
e is O for polytopes
e is an affine invariant

e there is an affine isoperimetric inequality

(;5((;)>>n+l : <||g5||>n_l’

with equality iff K is an ellipsoid (Blaschke; Petty)
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Applications of affine surface area
- geometric tomography (Gardner etc.)
- PDEs (Lutwak+Oliker, Trudinger, Wang, etc.)

- asymptotic geometric analysis
(e.g., Blaschke-Santalo inequalities)

- affine curve evolution

(Andrews, Sapiro, Stancu, Tannenbaum, etc.)

» originally only defined for smooth bodies

Then: Leichtweiss, Lutwak, Meyer+Werner, Schiitt+Werner,
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Let K be a convex body in R”. Let § > 0.
The (convex) floating body is the intersection of all halfspaces
H* whose defining hyperplanes H cut off a set of volume § of K:

Ks = ﬂ Ht
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Theorem (Schiitt+Werner)

Let K be a convex body in R”. Then

jim YO _2V01(K5) 1 <n 1 )> o /BK k(x) 7T dpa(x)

§—0 Sl 2 vol(Bg*1

K is the generalized Gaussian curvature

We see: affine invariance

Other application of the floating body: Data depth
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Random approximation

Choose N points xj ...xy in K or on 0K w.r. to a probability

measure P, m i
P=— o P=-—-
K] 0K

the convex hull [xi, ..., xy] of these points we call

RANDOM POLYTOPE

when chosen in K, not ALL points become vertices
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More generally:

f:OK — R strictly positive a.e. on 9K, [, fdu=1

Pr = fu

Choose N points xi,...xy w.r. to Pr on 0K

As before we call their convex hull [xg, ..., xy] a random
polytope. Every point chosen becomes a vertex




The expected volume of such a random polytope is

EN(aK,]P’f):/aK.../aK

[x1, ..., xn]|dPr(x1) . .. dPr(xn)
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Let K be a convex body in R" with sufficiently regular boundary.

1

K| —En(OK,P
Nllm ‘ | N(a2 ) f) = ¢, / &dM(X)
—00 <1> n—1 oK f( )
N
%
n+
» when points are chosen in K, one only gets: <,{,>

>
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K|~ En(0K.P) ~ cn (Alv) / K/;((;(;:;dﬂ(x)

> the optimal f which minimizes the right hand side is
1

I€”+1

fas = 1
Jo T du

Putting this f,s in the above formula, we get

n+1

(fox 00 eu) "

2
n—1
> |K| — IEN(8K,JP’fas) ~ Cp <Ib>

How do best and random approximation compare?
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n— 1
> K]~ |Poest] ~ () (faK e ) el
n— n—1
v K| — En(OK. By, ) ~ (k) (faK i du(x )) cn

To see how best and random approximation compare, we have to
compare ¢, and %deln_l

With an absolute constant ¢

1 1
Sdeln1 < o < (14 Sl Sdeln_1
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(i) a fixed number of facets = (n — 1)-dimensional faces

Typically, in the literature

in (i) P is inscribed in K
in (i) P is circumscribed to K

These restrictions need to be dropped

Again: we concentrate on the vertex case
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Drop requirement that Py C K

Theorem (Ludwig, Schiitt, Werner)

Let K be Cﬁ. There is a constant ¢ > 0 s.th. for all N large
enough there is a polytope P in R” with at most N vertices s.th.

2
]_ n—1
adk.P<c K (3)

» the corresponding result for facets holds as well
» When P C K (Bronsteyn&lvanov)

]_ n—1
AKP) = IK| - IPL < c n K] ()

e |f we drop the restriction, we gain by a factor of dimension: n



When P C K, we actually have

2

2
]. n—1 ]_ n—1
a n|K| <N) <A(K,P)=|K|-|P| < n|K| <N)

Upper bound: Bronsteyn & Ivanov
Lower bound: Gordon, Reisner & Schitt
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» |lower bound in the general case

Theorem (Boroczky)

For every polytope Py with at most N vertices

2

n € pn Lyt
A, (B], Pn)| = - |B;| N

2

n n Lyt
ades Py <clegl ()

GAP between lower and upper bound by a factor of dimension
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Theorem (Grote+Werner)

Let K be a convex body in R” that is C_%. Let f : 0K — Ry be a
continuous and strictly positive function with

/ f(x)du(x) =1.
oK

Then, for N sufficiently large, there exists a polytope Pr in R”
having N vertices such that

AV(K,Pf)gaN—nfl/ RO
oK f(X)ﬁ

where a € (0,00) is an absolute constant.
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A(K,Pf) < aN ™ w1 / dpu(x)

oK f(X)ﬁ

Comments

e  The proof is via a random construction:
We choose at random points xi, ..., xy with respect to Pr = fpu
on JK and approximate (1 — ¢)OK and re-adjust

e One gains by a factor of dimension if one allows arbitrarily
positioned polytopes

K| — En(OK, Pf) ~ nN_ﬂ21/ _
oK f(X)ﬁ

e  There is a gap between upper and lower bound by a factor of
dimension

e  Assumption Cﬁ can be relaxed
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is the affine surface area of K.
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A(K, Pr) ga/v—nzl/ ; du(x)

oK £(x)71

e Minimum on RHS is attained for the normalized affine surface
area measure with density

where
as(K) = [ 1) dhiow ()
oK

is the affine surface area of K. Then

n+1

A(K,Pg) <aN 1as(K)



2 n+1

A (K,Pr) < aN 1 as(K)nt




. o (as(K) "
affine isoperimetric inequality <

Ay(K,Pr) < aN7 1 as(K)n1
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Ay(K,Pr) < aN7 1 as(K)n1
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2 n+1
aN 1 as(K)n1
AN voln(K)
vol,(B3)
AN vol,(K)
vol,(B3)
aN~ "1 vol,(K)




A(K,Pg) < aN i as(K)Sﬂ
2 VOIn(K) n+1
< N~ n— BN -1
= vol,(BY) (B7)
= gN = V0|n(K) (n V0|n(B£’))n H

< aN 1voI n(K)

The latter is the above mentioned result by
Ludwig+Schiitt+Werner: A, (K,P) <c N 1 vol n(K)



