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PART III: MISCELLANEA
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MISCELLANEA: SOME DEPTH-LIKE
PROCEDURES



MULTIVARIATE QUANTILE SURFACE

Definition (Ahidar-Coutrix and Berthet, 2016)
Let O ∈ Rd, δ ∈ (0, 1/2] and P ∈ P

(
Rd). The quantile surface

Q(O, δ) of P at level δ about the observer O is the set of all
projections of O to the boundaries of all halfspaces H ∈ H that
satisfy P(H) = δ.
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MULTIVARIATE QUANTILE SURFACE

Quantile surface of K for δ = 0.3 and O the halfspace median
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MULTIVARIATE QUANTILE SURFACE

Floating body of K for δ = 0.3
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MULTIVARIATE QUANTILE SURFACE
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MULTIVARIATE QUANTILE SURFACE

Quantile surface of K for δ = 0.3 and O 6= the halfspace median
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MULTIVARIATE QUANTILE SURFACE: PROPERTIES

Proposition (Ahidar-Coutrix and Berthet, 2016)
Under “minimal” assumptions for O∗ the median

ä {Q(O∗, δ)}δ∈(0,1/2] forms boundaries of an increasing
system of embedded star-convex bodies.

ä uniform strong consistency (in the Hausdorff metric).
ä uniform weak convergence to a Gaussian process.
ä uniform law of iterated logarithm.
ä a Bahadur-Kiefer representation.
ä non-asymptotic approximation by a Gaussian process.
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MULTIVARIATE QUANTILE SURFACE AND DEPTH

Proposition (Ahidar-Coutrix and Berthet, 2016)
For O∗ the halfspace median of P, {Q(O∗, δ)}δ∈(0,1/2] determines
the support function of hDδ(P).

ä Not true in general, holds only if the floating bodies of P
exist.

ä The relations are more involved — hDδ is the Wulff shape
of the Frank diagram given by Q(O∗, δ).
(Ševčovič and Trnovská, 2015)
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MULTIVARIATE QUANTILE SURFACE AND DEPTH

Proposition
Halfspace depth quantiles hDδ(P) are the Wulff shapes
corresponding to the integrand

Φ: Sd−1 → R : u 7→ sup {t : P (〈X,u〉 ≤ t) ≤ δ} .

In this representation the multivariate quantile surface Q(O∗, δ)

is given by the anisotropy Φ.

ä hDδ(P) are “dual” to Q(O∗, δ)
?

=⇒ which properties shown
for Q(O∗, δ) can be transferred?
(Ahidar-Coutrix and Berthet, 2016)

ä
?

=⇒ optimality of the halfspace depth quantiles? (Taylor,
1978)
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PROBLEM: TIES

With increasing dimension d the number of depth-ties
increases.
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PROBLEM: CLASSIFICATION

For X ∼ P1, Y ∼ P2 and x ∼ Pi, i ∈ {1, 2} unknown, find i.
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ILLUMINATION BODY

Definition (Werner, 1994)
Let K ⊂ Rd be a convex body and δ > 0. The illumination body
of K corresponding to δ is given by

Kδ =
{
x ∈ Rd : vol (co (x, K)) ≤ vol (K) + δ

}
.
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ILLUMINATION BODY: PROPERTIES

Proposition (Werner 1994, 2006)
It holds true that:

ä
{
Kδ
}
δ>0 is an increasing system of concentric convex

bodies.
ä For K an ellipsoid, each Kδ is an ellipsoid of the same

shape.
ä Kδ is invariant w.r.t. rotations.
ä There exists bd > 0 such that

Ω(K) = lim
δ→0

bd
vol

(
Kδ
)
− vol (K)

δ2/(d+1) .

35/125



ILLUMINATION

Definition
Let P ∈ P

(
Rd) and x /∈ co (Supp (P)). The illumination of x w.r.t.

P is
I (x;P) = vol (co (x,Supp (P))) .

For x, y ∈ Rd such that

hD(x;P) = hD(y;P) = 0

we say that x is deeper than y if I (x;P) < I (y;P).
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ILLUMINATION

I (x;P) = vol (co (x,Supp (P)))
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ROBUST ILLUMINATION

Definition (Nagy and Dvořák, 2021)
Let P ∈ P

(
Rd), x ∈ Rd. The robust illumination of x w.r.t. P is

I (x;P) = vol (co (x, {hD(·;P) ≥ (hD(x;P) + s)/2})) ,

where s = supy∈Rd hD(y;P).

For x, y ∈ Rd such that

hD(x;P) = hD(y;P)

we say that x is deeper than y if I (x;P) < I (y;P).
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ROBUST ILLUMINATION
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ROBUST ILLUMINATION

I (x;P) = vol (co (x, {hD(·;P) ≥ (hD(x;P) + s)/2}))
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EXAMPLE: CLASSIFICATION

For X ∼ P1, Y ∼ P2 and x ∼ Pi, i ∈ {1, 2} unknown, find i.
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ILLUMINATION: PROPERTIES

Illumination has an array of good properties:

ä duality w.r.t. the halfspace depth,
ä conceptual and computational simplicity,
ä rotational invariance,
ä consistency and robustness,
ä invariance for elliptically symmetric distributions,

all this with no assumptions on P.

In many applications it outperforms much more complicated
methods (Einmahl et al., 2015; Paindaveine and Van Bever, 2013).
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DEPTH IN FUNCTION SPACES



FUNCTIONAL DATA

X ∼ P ∈ P (F) and X1, . . . , Xn i.i.d. from P. Consider the depth of
functional observations w.r.t. P

D : F × P (F) → [0, 1].
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HALFSPACE DEPTH IN R

hD1(u;Q) = min {FQ(u), 1− FQ(u−)} ≈ 1/2− |1/2− FQ(u)|
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DEPTH IN FUNCTION SPACES

For F a Banach space and X ∼ P ∈ P (F), what is the depth?

D : F × P (F) → [0, 1].

ä For the halfspace depth, only the linear structure of Rd is
needed:

hD(x;P) = inf
u∈Rd

P
({

y ∈ Rd : 〈y,u〉 ≤ 〈x,u〉
})

.

ä Others, such as the simplicial depth in Rd depend on d,
the dimension of the space.
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DEPTH IN FUNCTION SPACES

For F a Banach space and X ∼ P ∈ P (F), what is the depth of
x ∈ F?

D : F × P (F) → [0, 1].

ä Functional halfspace depth: for F∗ the dual space of F

hD(x;P) = inf
φ∈F∗

P ({y ∈ F : φ (y) ≤ φ(x)}) .

ä The simplicial depth does not work directly in function
spaces.
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FUNCTIONAL HALFSPACE DEPTH IN L2 (T )

For F = L2 (T ) the space of square-integrable functions,
F∗ = F

hD(x;P) = inf
u∈L2(T )

P
({

y ∈ L2 (T ) : 〈y,u〉 ≤ 〈x,u〉
})

ä How to compute the depth?
ä What properties does it have?
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RANDOM HALFSPACE DEPTH IN L2 (T )

Drawing the directions randomly we obtain the random
halfspace depth (Cuesta-Albertos and Nieto-Reyes, 2008)

hDm(x;P) = min
u∈{U1,...,Um}

P
({

y ∈ L2 (T ) : 〈y,u〉 ≤ 〈x,u〉
})
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RANDOM HALFSPACE DEPTH IN L2 (T )

The random halfspace depth (Cuesta-Albertos and Nieto-Reyes, 2008)

hDm(x;P) = min
u∈{U1,...,Um}

P
({

y ∈ L2 (T ) : 〈y,u〉 ≤ 〈x,u〉
})

ä The depth of a fixed function w.r.t. a fixed measure is
random.

ä How to choose the number of directions m?
ä What distribution to draw from?
ä Each functional datum lives in its own dimension!
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RANDOM HALFSPACE DEPTH IN L2 (T )

Each functional datum lives in its own dimension:

Proposition
For a random sample X1, . . . , Xn of infinite-dimensional
functional data, Xn lies outside of the convex hull of
X1, . . . , Xn−1, almost surely.

ä The Hahn-Banach theorem implies that the sample
functional halfspace depth is constant zero.

ä The (random) halfspace depth necessarily degenerates (as
m → ∞).
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HALFSPACE DEPTH DEGENERATES

For (certain) Gaussian processes P ∈ P (F) for P-almost all
x ∈ F
(Chakraborty and Chaudhuri, 2013)

hD (x;P) = inf
φ∈F∗

P ({y ∈ F : φ (y) ≤ φ(x)}) = 0.

Many other functional depths (López-Pintado and Romo, 2009, 2011;
Zuo and Serfling, 2000) degenerate too.

Condition 0: Depth should not degenerate. That is, it is not
allowed that D(x;P) = 0 for P-almost all x ∈ F .

Ô Restrict the set of projections in hD from the dual F∗ to a
smaller, but still representative and well interpretable subset.
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INTEGRATED DEPTHS

Average depth of a functional value
(Fraiman and Muniz, 2001; Cuevas and Fraiman, 2009)

FD (x;P) =
∫
T
D1(x(t),Pt)d t, D1(u;Q) = 1/2− |1/2− FQ(u)| .
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INFIMAL DEPTHS

Smallest depth of a functional value
(Mosler, 2013; Narisetty and Nair, 2016)

ID (x;P) = inf
t∈T

D1 (x(t);Pt) , D1(u;Q) = 1/2− |1/2− FQ(u)| .
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FUNCTIONAL DEPTH

Basic types of depth for functional data:

ä integrated depth

FD (x;P) =
∫
T
D1(x(t),Pt)d t,

ä infimal depth

ID (x;P) = inf
t∈T

D1 (x(t);Pt) .
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GENERAL FUNCTIONAL DEPTH

For a Banach space B and B∗ its dual, P ∈ P (B), Φ ⊂ B∗:

ä integrated depth

FD (x;P) =
∫
Φ
D1(φ(x),Pφ(X))dλ(φ),

ä infimal depth

ID (x;P) = inf
φ∈Φ

D1
(
φ(x),Pφ(X)

)
.

The set Φ ⊂ B∗ is typically the collection of evaluation
functionals

{φt : x 7→ x(t) : t ∈ T } ,

but not necessarily so. λ is a measure on Φ.
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DEGENERACY PROBLEM

Proposition
The integrated depth does not degenerate, but the infimal
depth “almost” does.

Example: Consider X ∼ P ∈ P (C) given as a linear interpolant
of

ä X(0) = 0, and
ä X(1/n) = Bernoulli(1/2)/n independent for n = 1, 2, . . . .

Then ID(x;Pn) = 0 for all x ∈ C, almost surely.
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INFIMAL DEPTHS: DEGENERACY PROBLEM

For X ∼ P the randomly jumping function

ID(x;P) = 1/2× I [0 ≤ x(t) ≤ t for all t ∈ [0, 1]]
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INFIMAL DEPTHS: DEGENERACY PROBLEM

For X1, . . . , Xn a random sample from P with empirical measure
Pn

ID(x;Pn) = 0 for any x 6= Xi, i = 1, . . . ,n.
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DEPTH DISTRIBUTION

Consider the depth distribution of x ∈ L2 (T ), that is the law of

Dx : (T ,B (T ) , λ) → [0, 1] : t 7→ hD (x(t);Pt)

being a random variable on T .

ä The integrated depth is the mean of Dx

FD(x;P) =
∫
T
hD (x(t);Pt) dλ(t) = EDx.

ä The infimal depth is the (essential) infimum of Dx

ID(x;P) = inf
t∈T

hD (x(t);Pt) ,

that is the lower end-point of the support of Dx.
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DEPTH DISTRIBUTION

The depth distribution of x ∈ L2 (T ) w.r.t. the random sample

Dx : (T ,B (T ) , λ) → [0, 1] : t 7→ hD (x(t);Pt)

Histogram of D
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DEPTH DISTRIBUTION

The depth distribution of x ∈ L2 (T ) w.r.t. the random sample
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ADAPTIVE FEATURE CHOICE: DEPTH DISTRIBUTION

The K-integrated depth with K ∈ R

DK(x;P) =
(∫

T
(hD(x(t);Pt) + 1/2)k dλ(t)

)1/k
− 1/2

=
(
E (Dx + 1/2)k

)1/k
− 1/2

is, basically, the k-th moment of the depth distribution of x.
We obtain a family of depths

ä for k = 1 the usual integrated depth;
ä as k → −∞ a version of the infimal depth;
ä choice of k allows us to fine tune.
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TRAJECTORIES OF THE K-INTEGRATED DEPTHS

The trajectories K 7→ DK(x;P) =
(
E (Dx + 1/2)k

)1/k
− 1/2
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GENERAL FUNCTIONAL DEPTHS?

One can choose any (location) parameter L of the depth
distribution

DL(x;P) = L(Dx)

to obtain a custom tailored depth functional. Examples are

ä quantiles,
ä trimmed means,
ä M-estimators...

The resulting depths possess quite different properties.

Case in point: Sample version consistency.
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A THEORETICAL ISSUE: CONSISTENCY

Let Pn ∈ P (B) be the (random) empirical measure of a random
sample X1, . . . , Xn from P.

A depth D on space B is

ä consistent if D(x;Pn)
a.s.−−−→

n→∞
D(x;P) for all x ∈ B;

ä uniformly consistent if supx∈B |D(x;Pn)− D(x;P)| a.s.−−−→
n→∞

0.

Ô In B = Rd, the halfspace depth is uniformly consistent.
Ô In function spaces uniform consistency requires new

theories.
Ô Functional depths are often not consistent uniformly.
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INFIMAL (QUANTILE) DEPTHS ARE NOT CONSISTENT

ID is not consistent for, e.g., P the Wiener measure
(Gijbels and Nagy, 2015)
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INTEGRATED-TYPE DEPTHS ARE UNIFORMLY CONSISTENT

By the dominated convergence theorem (and measurability)

sup
x∈L2(T )

|FD (x;P)− FD (x;Pn)|

= sup
x∈L2(T )

∣∣∣∣∫ 1

0
hD (x(t);Pt)− hD (x(t);Pn,t) d t

∣∣∣∣
≤

∫ 1

0
sup

x∈L2(T )

|hD (x(t);Pt)− hD (x(t);Pn,t)| d t

≤
∫ 1

0
sup
u∈R

|hD (u;Pt)− hD (u;Pn,t)|d t,

a.s.−−−→
n→∞

0

FD is universally consistent, but this proof is not complete.
(Nagy et al., 2016)
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PROBLEM: UNIFORM CONSISTENCY

The Vapnik-Červonenkis theory gives that

sup
u∈R

|hD (u;Pt)− hD (u;Pn,t)|
a.s.−−−→

n→∞
0

for each t ∈ T separately. That is, the convergence is true for
all ω /∈ Nt with P(Nt) = 0. But,

ä There are uncountably many different t ∈ T and
uncountably many such sets Nt ⊂ Ω.

ä The union
⋃

t∈T Nt does not have to be a P-null set.

To conclude consistency, that is∫ 1

0
sup
u∈R

|hD (u;Pt)− hD (u;Pn,t)|d t a.s.−−−→
n→∞

0,

one needs to guarantee that P
(⋃

t∈T Nt
)
= 0.
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UNIFORM CONSISTENCY OF INTEGRATED DEPTHS

Theorem
All integrated depths are uniformly consistent over L2 (T ), for
any P ∈ P

(
L2 (T )

)
.

ä Proof uses measurability / abstract Fubini’s theorem
(Nagy et al., 2016; 2021).

ä For general functional depths with location parameters L,
it is not easy to establish P

(⋃
t∈T Nt

)
= 0.
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APPLICATION: BAGPLOT

Bagplot — depth-based boxplot for multivariate data
(Rousseeuw et al., 1999)
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FUNCTIONAL BOXPLOT

Functional boxplot based on integrated depths for functional
data (Sun and Genton, 2011)
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FUNCTIONAL BOXPLOT: ROBUSTNESS

Functional boxplot based on integrated depths for functional
data (Sun and Genton, 2011)
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FUNCTIONAL BOXPLOT

Functional boxplot based on integrated depths for functional
data (Sun and Genton, 2011):

ä When based on integrated depths, they fail to be robust.
ä No guarantees for the nominal coverage probability of the

box.
ä What is the population version of the functional boxplot?
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FUNCTIONAL BOXPLOT

Boxplot based on an infimal depth (Narisetty and Nair, 2016)
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FUNCTIONAL BOXPLOT

Boxplots and central regions based on an infimal depth
(Narisetty and Nair, 2016) are useful also in other contexts:

ä Envelope testing (Ripley, 1977; Myllymäki et al., 2016);
ä Functional ANOVA (Mrkvička et al., 2020);
ä Confidence/prediction regions for functional data

(Diquigiovanni et al, 2021);
ä Analysis of functional records (Martínez-Hernández and Genton,

2019);
ä ...
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FUNCTIONAL BOXPLOT: LIMITATIONS

Blind to the shapes of the functions and phase variation
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BLINDNESS TO SHAPE FEATURES

Boxplots/infimal depths are blind to the shapes of the
functions and phase variation:

ä The reason being the univariate nature of the depth

ID (x;P) = inf
t∈T

D1 (x(t);Pt) .

ä Impossible to be avoided using bands directly.
ä Are bands really analogues of convex hulls for functional

data?
ä How to better visualize functional data?
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CONCLUSIONS

What we know:

ä Functional depth is a very active field of FDA,

ä with many potential applications,

ä and many depths have been proposed.

ä The selection of a depth is crucial.

Open problems:

ä Desiderata for the depth?

ä Statistical properties.

ä How to choose a depth?

ä Efficient visualization of functional data? Are bands the way to
go?

ä Which depths characterize distributions? (Wynne and Nagy, 2021+)94/125



DEPTH FOR DIRECTIONAL DATA



DIRECTIONAL DATA: ANGULAR HALFSPACE DEPTH

Directional data means P ∈ P
(
Sd−1) (Ley and Verdebout, 2017).

The angular halfspace depth (Small, 1987; Liu and Singh, 1992) of a
point x ∈ Sd−1 w.r.t. P

ahD (x;P) = inf {P (H) : H ∈ H0 and x ∈ H} .
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ANGULAR HALFSPACE DEPTH

ahD (x;Pn) = min
# of observations in H ∈ H0 that contains x

n
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ANGULAR HALFSPACE DEPTH: THEORY

Known theory for ahD is quite analogous to that of hD:

ä rotation invariance and sample version consistency, or
ä quasi-concavity similarly as for hD.
ä Distinctive is the existence of a hemisphere of minimum

depth — an open hemisphere S ⊂ Sd−1 with

ahD (x;P) = inf {P(H) : H ∈ H0} for all x ∈ S.

But, the theory is less developed. Not much is known about
e.g.

ä asymptotic normality of the sample version,
ä asymptotics and the convergence of the level sets,
ä statistical robustness, or
ä algorithms.
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(LINEAR) HALFSPACE DEPTH: COMPUTATION

Computational aspects of hD:

ä determining hD(x;P) exactly is in general NP-hard
(Johnson and Preparata, 1978);

ä reasonably fast exact algorithms are available for low
d ≤ 5
(Rousseeuw and Struyf, 1998; Dyckerhoff and Mozharovskyi, 2016);

ä very fast approximate algorithms exist
(Dyckerhoff, 2004; Chen et al., 2013; Dyckerhoff et al., 2021);

ä fast computation of central regions / halfspace median
(Liu et al., 2019).

Implemented in R packages depth (Genest et al., 2008), ddalpha
(Pokotylo et al., 2013), TukeyRegion (Barber and Mozharovskyi, 2017), or
mrfDepth (Segaert et al., 2017).
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HALFSPACE DEPTH: COMPUTATION

Datasets in R2 (left) and R3 (right) with central regions and
medians
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ANGULAR HALFSPACE DEPTH: COMPUTATION

Quoting Pandolfo, Paindaveine, and Porzio (2018, p. 594)

“The main drawback of [...] the angular halfspace
depth is the computational effort it requires, especially
for higher dimensions d.”

The only implementation sdepth in package depth (Genest et
al., 2008) in R allows just d = 2, 3.
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IDEA: GNOMONIC PROJECTION AND HALFSPACES

Note: Here, P ∈ P
(
Sd−1) is always absolutely continuous.

For ed = (0, . . . , 0, 1) we denote

Sd−1
+ =

{
x ∈ Sd−1 : 〈x, ed〉 > 0

}
, Sd−1

− =
{
x ∈ Sd−1 : 〈x, ed〉 < 0

}
,

the “northern” and the “southern” hemisphere, and write

G =
{
x ∈ Rd : 〈x, ed〉 = 1

}
for the “horizontal” hyperplane that touches Sd−1 at ed.

The gnomonic projection of Sd−1 maps x ∈ Sd−1
+ to

π(x) = x/〈x, ed〉 ∈ G.

For x ∈ Sd−1
− we define π(x) = π(−x).
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IDEA: GNOMONIC PROJECTION AND HALFSPACES

The gnomonic projection

x ∈ Sd−1
+ 7→ π(x) = x/〈x, ed〉 ∈ G.
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TOWARD SIGNED HALFSPACE DEPTH I

For any H ∈ H0 it holds true that

π
(
H ∩ Sd−1

+

)
= H ∩ G, π

(
H ∩ Sd−1

−

)
= G \ int (H) ,

where int (H) is the interior of H.
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TOWARD SIGNED HALFSPACE DEPTH II

We define a signed measure P± on G by

P± (H ∩ G) = P
(
H ∩ Sd−1

+

)
− P

(
Sd−1
− \ H

)
for H ∈ H0.

114/125



TOWARD SIGNED HALFSPACE DEPTH III

Altogether for any H ∈ H0 and x ∈ Sd−1
+

P (H) = P
(
Sd−1
−

)
+ P± (H ∩ G) ,

ahD (x;P) = P
(
Sd−1
−

)
+ inf {P± (H) : H ∈ H and x ∈ H} .
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SIGNED HALFSPACE DEPTH

Computation of ahD (x;P) in Sd−1 is equivalent with the
evaluation of the signed halfspace depth in Rd−1

inf {P± (H) : H ∈ H and x ∈ H} .

For the latter, fast algorithms for hD can be adapted.
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COMPUTATION TIMES I: COMPARISON WITH sdepth

Comparison with sdepth from the R package depth

n 10 50 100 500 1000 5000
fast 0.000018 0.00015 0.0006 0.020 0.080 2.34

sdepth 0.001440 0.11200 0.8600 109.310 944.620 —
ratio 80 747 1433 5466 11808 —

Table 1: Computation times (in seconds) of ahD (x;P) for a single
point x w.r.t. a random sample of n observations in dimension d = 3.
In the bottom row the fraction sdepth/fast.
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COMPUTATION TIMES II: SCALABILITY

Computing the depth of k points w.r.t. a dataset of size 1000.
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Compare with ∼ 944 seconds for ahD of a single observation
w.r.t. a dataset of size 1000 using sdepth. 121/125



CONCLUSION

Computation of ahD in Sd−1 is not that hard.

ä Efficient algorithms for hD from Rd can be adapted to ahD.
ä Fast C++ implementation for the R package ddalpha is in

preparation, also for Sd−1 with d > 3.

Applications to data analysis and further challenges:

ä Visualisation, classification, spherical boxplots;
ä Additional theory of ahD;
ä Halfspace depth on manifolds other than Sd−1?

(Carrizosa, 1996; Dai and López-Pintado, 2021)
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CONCLUSIONS: DEPTH AND NONPARAMETRICS

The depth

ä can extend nonparametrics to multivariate data;
ä looks easy, but is (often) not;
ä provides plenty of interesting open problems.

My conclusions:

ä Read and talk to people. Especially outside your field.
ä Not all is trivial. Even little progress counts.
ä Think more, simulate less.
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If you are interested, let us know

nagy@karlin.mff.cuni.cz
GeMS.karlin.mff.cuni.cz
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