DATA DEPTH:
IN BETWEEN STATISTICS AND GEOMETRY

Stanislav Nagy
Mathematical Forum 2024

Charles University, Prague
Department of Probability and Mathematical Statistics

@



MOTIVATION: THE MEDIAN

of X~ P e P(R)isany m € R such that
min{P(X < m),P(X > m)} >1/2.
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MOTIVATION: THE MEDIAN

and the mean of X ~ P € P (R)
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MOTIVATION: THE MEDIAN

and the mean under contamination (5% at x = 20)
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MOTIVATION: THE MEDIAN

and the mean under contamination (5% at x = 50)
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MOTIVATION: THE MEDIAN

The median has a number of advantages:

e Always exists;

Very robust (i.e., hard to disturb);

Equivariant to monotone transformations;

Easy to compute;
e A member of the family of quantiles Q(a) = F~'(a), a € [0,1].

Our main problem:

What is a median for multivariate data?



MOTIVATION: THE MEDIAN

The median has a number of advantages:

e Always exists;

Very robust (i.e., hard to disturb);

Equivariant to monotone transformations;

Easy to compute;

A member of the family of quantiles Q(a) = F~'(a), a € [0,1].

Our main problem:

What are the quantiles for multivariate data?



STATISTICAL DEPTH

Statistical depth function: Ordering data in multivariate spaces.

Introduced in 1975 (Tukey); studied intensively since the 1990s.



STATISTICAL DEPTH FUNCTION

For P (RY) Borel probability measures on R consider the depth

D:RIx P <R“> —[0,1]: (x, P) = D(, P).
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STATISTICAL DEPTH FUNCTION

For P (RY) Borel probability measures on R consider the depth

D:RYx P <Rd> —[0,1]: (x, P) = D(x, P).
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PRINCIPAL GOAL: DISTRIBUTION-CHARACTERIZING DEPTHS

Find a depth that:

C1 characterizes probability distributions uniquely,

@)

C2 is highly (e.g., affine) equivariant,
C3 induces robust medians, and

C4 is fast to compute.

Impact: A universal framework of multivariate nonparametrics.

w Data exploration/statistical estimation and testing/visualisation
free of parametric assumptions for complex datasets.



HALFSPACE DEPTH

Halfspace depth (Tukey, 1975) of a point x € R? w.rt. P € P (RY)

D(x; P) = Helan(x) P(H).
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HALFSPACE DEPTH

# of observations in a halfspace that contains x

D (x; Pn) = min p
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HALFSPACE DEPTH

# of observations in a halfspace that contains x

D (x; Pn) = min p




APPLICATION: BAGPLOT

Bagplot: A multivariate boxplot (Rousseeuw et al, 1999)
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DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

2.0
I

15

1.0

0.5
i




DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

2.0
I

15

1.0

0.5
i




DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]




DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

20



DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

2.0
I

15

1.0

0.5
i

21



DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

2.0
I

15

1.0

0.5
i

22



DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

2.0
I

15

1.0

0.5
i

23



DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]

Ps — {x € RY: D(x; P) > 6} is convex

24



DEPTH: LEVEL SETS

D(-; P) is always quasi-concave, i.e. for each ¢ € [0, 1]
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DEPTH: LEVEL SETS

We can write (Rousseeuw and Struyf, 1999; Zuo and Serfling, 2000)

PJ:{XGRd:D(X;P)zé}:ﬂ{HeH:P(H)>176}.
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MOTIVATION: GRUNBAUM'S INEQUALITY

K € K9 compact, convex K ¢ RY with non-empty inter.

|
Identify P uniform on K with K w»  The depth D(x; K) of K € K¢.

Proposition (Griinbaum, 1960)
Let K € K9, and X uniform on K. Then

D (EX;K) > <di1)d.

d
e limy_ o (di“) =exp(—1) = 0.37.



NONPARAMETRICS OUTSIDE STATISTICS: HALFSPACE DEPTH

Floating
bodies
Measures (Affine
of geometry)
symmetry
(Convex
analysis) (Outer)
Halfspace billiard
depth problems
(Statistics) (Dynamical
Cehte r systems)
points,
R-sets
(Discrete Radon
math.) transforms
(Integral
geometry)
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APPLICATIONS
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FLOATING BODY

STABTLITE,

o |

APPLICATIONS, PL.II..
——

]"ig. 7
) //\ h'

Definition (pupin, 1822)
A convex body Kps is the Dupin floating body of K € K9 foré > 0 if
each supporting hyperplane of K5 cuts off a set of volume 4 from K.

Fi i 10.
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FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3

0.8-
0.6-
0.4-

0.2

-0.4 -0.2 0.0 0.2 04

31



FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K? for § = 0.3

0.8
06-

04

0.2-

0.0

Z04 202 00 02 0.4

34



FLOATING BODY

Dupin’s floating body of K € K? for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K? for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3
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FLOATING BODY

Dupin’s floating body of K € K2 for § = 0.3
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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CONVEX FLOATING BODY

Definition (Schiitt and Werner, 1990)
Let K € K% with vol (K) = 1 and let § € (0,1/2).
The convex floating body of K associated with ¢ is given by

Ks=[){H € H: vol (KN H) >1-6}.

Proposition (Schiitt and Werner, 1990)

e Ks always exists.
o If Kis) exists, then Kis) = Ks.
e Just as Kjs), also Ks has “nice” properties.
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CONVEX FLOATING BODY

Convex floating body of K always exists
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DEPTH: ASYMPTOTIC NORMALITY

LetP, e P (Rd) be the empirical measure of n i.i.d. variables from P.
Vn (D(x; Py) — D(x; P)) is asymptotically normal
<= D(x; P) is realised by a single halfspace H € H(x) (Massé, 2004)
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DEPTH: ASYMPTOTIC NORMALITY

LetP, e P (Rd) be the empirical measure of n i.i.d. variables from P.
Vn (D(x; Py) — D(x; P)) is asymptotically normal
<= the contour of D(:;P) is at x
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DEPTH: ASYMPTOTIC NORMALITY

LetP, e P (Rd) be the empirical measure of n i.i.d. variables from P.
Vn (D(x; Py) — D(x; P)) is asymptotically normal
<= the contour of D(:;P) is at x
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PROBLEM: SMOOTHNESS OF THE DEPTH

distributions have smooth depth contours
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SMOOTHNESS OF FLOATING BODIES

Problem (Massé and Theodorescu, 1994)

Is there a non-elliptical distribution with smooth depth contours?

Proposition (Meyer and Reisner, 1991)
Uniform distributions on smooth, symmetric, strictly convex bodies
have smooth depth.

An analogous result for P € P (R%) with a density?
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DEPTH CHARACTERIZATION CONJECTURE

(Struyf and Rousseeuw, 1999)
Does for any P # Q in P (RY) exist x € RY such that D(x; P) # D(x; Q)?

Positive answers for P € P (RY) such that:

o d =1 (there depth ~ distribution function).

P is purely atomic, with finitely many atoms.
(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021)

P is atomic. (Cuesta-Albertos and Nieto-Reyes, 2008)

P is properly integrable. (Koshevoy, 2003)

P has a smooth density. (Hassairi and Regaieg, 2008)

all Dupin’s floating bodies of P exist.
(Kong and Zuo, 2010; Nagy, Schiitt, Werner, 2019)

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
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DEPTH CHARACTERIZATION CONJECTURE

(Struyf and Rousseeuw, 1999)
Does for any P # Q in P (RY) exist x € RY such that D(x; P) # D(x; Q)?

Positive answers for P € P (RY) such that:

e d =1 (there depth ~ distribution function).
e Pis purely atomic, with finitely many atoms.
(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021)

o Pisatemte (Cuesta-Albertos and Nieto-Reyes, 2008)

o Pisproperly-trtegrabte: (Koshevoy, 2003)
o Phasasmooth-denstty: (Hassairi and Regaieg, 2008)

e all Dupin’s floating bodies of P exist.
(Kong and Zuo, 2010; Nagy, Schiitt, Werner, 2019)

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
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CHARACTERIZATION CONJECTURE

(Struyf and Rousseeuw, 1999)
Does for any P # Q in P (RY) exist x € RY such that D(x; P) # D(x; Q)?

Not for d > 1.
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MEASURES OF SYMMETRY OF CONVEX BODIES

Definition (Griinbaum, 1963)

A mapping p: K¢ — [0,1] is a measure of symmetry if

e p(K) =1if and only if Kis symmetric;

e p(T(K)) = p(K) for non-singular affine transforms T: RY — R% and

e pis continuous.

The Winternitz measure of symmetry: (Winternitz, 1910s)

p(K) = 2max D(x; K),
xeRd

i.e. twice the depth of the halfspace median of K.

58]



FUNK'S CHARACTERIZATION OF SYMMETRY

Theorem
K e K9 is symmetric around the origin 0 if and only if

vol (KN H) = vol (K) /2

for every halfspace H € H(0).

Proof:

o R?: easy;
e R3: proved in the 1910s (Funk, 1915);
e RY proved 50 years later using spherical harmonics (Schneider, 1970).
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FUNK THEOREM: PROOF FOR d = 2

D(x;K) =1/2 = Ke K9 is symmetric around x
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SYMMETRY OF MEASURES IN STATISTICS

A measure P € P (R?) with X ~ P is called (zuo and Serfling, 2000)
e halfspace symmetric around x € R? if D(x; P) > 1/2,
e angularly symmetric around x € R? if

X—X d X—X
X = xII [IX = x|

Theorem (Funk, 1915 and Schneider, 1970)
A uniform distribution on K € K9 is halfspace symmetric if and only if
it is angularly symmetric.
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SYMMETRY OF MEASURES IN STATISTICS

Zuo and Serfling (2000)

Theorem 2.6. Suppose a random vector X is halfspace symmetric about a unique
point 0 RY, and either

(1) X is continuous, or
(2) X is discrete and P(X = 0)=0.

Then X is angularly symmetric about 0.

Proof:

To prove that (iv) = (i), take ¢ =2 for the sake of simplicity. First we show that if
P(X€H)=P(X € —H) for any closed halfspace A with the origin on the boundary,
then

P(XEH]QH2)=P(XE—H1|F]—H2) (Al)
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SYMMETRY OF MEASURES IN STATISTICS

Dutta, Ghosh, Chaudhuri (2011)

Theorem 2. Suppose that X is a d-dimensional random vector with a probability distribution
which has its half-space median at u € RY. Then, the half-space depth of p will be 0.5 if and
only if X — p)/||1X — pll2 and (u — X) /|1 X — pll2 are identically distributed.

Proof:

First, we shall prove it for the bivariate case, that is, ¢ = 2. Without loss of generality, we
assume that u = 0. Let Z be the angle between the positive side of the x;-axis and the random
vector X (measured counterclockwise from the xi-axis). Now, consider a straight line which
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SYMMETRY OF MEASURES IN STATISTICS

Rousseeuw and Struyf (2004)

Corollary 1. When P has a density, then P is angularly symmetric about some 6y if
and only if

max ldepth(0) = %

Proof: For any dimension d.
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IDEA OF THE PROOF (ROUSSEEUW AND STRUYF, 2004)

(i). The map x = (x1/ |Xal, %2/ |Xdl s - - -, Xq/ [X4|) takes H(0) to
halfspaces inside hyperplanes H¥ = {x € R%: x4 = £1}.

(ii). Apply the Cramér-Wold theorem (Cramér and Wold, 1936) in R9~".
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MINIMIZING HALFSPACE AND BARYCENTRIC CUT

e He H(x)isaminimizing halfspace of P at x if P(H) = D(x; P).
e Ahyperplane 9H is a barycentric cut of P at x if the centroid of the
cut (conditional distribution) of P by 0H is x.

05

00
-1.0 -0.5 0.0 05 1.0

= For K € K9 the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).
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RECONSTRUCTING K FROM ITS FLOATING BODY

= For K € K9 the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).

w Starting from a single point y € 9K, reconstruct the boundary of K.

w Outer billiards with Ks as a table (Tabachnikov, 1995).
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OUTER BILLIARD: CIRCLE |

Reconstructing K € K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG |
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OUTER BILLIARD

Reconstructing K € K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG Il

Reconstructing K € K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG Il

Reconstructing K € K2 from its floating body using barycentric cuts.
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DEPTH FOR DIRECTIONAL DATA

Angular halfspace depth (small, 1987) of x € S~ w.rt. P € P (S91)

aHD(x; P) = inf {P(H) : H € H(0),x € H}.

7



ANGULAR HALFSPACE DEPTH: ALMOST FORGOTTEN

Pandolfo, Paindaveine, Porzio (2018):

“The main drawback of the angular halfspace depth is the
computational effort it requires, especially for higher dimen-
sions.”

In R, function sdepth in package depth (Genest et al, 2019)

e works only ford = 2,3,
e computing aHD for a single point x € S

- for sample size n = 200 takes 7 seconds,
- for sample size n = 500 takes 2 minutes,
- for sample size n = 1000 takes forever.
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A GEOMETRIC ALGORITHM C2(M): d = 3 (IN SECONDS)

d=3 single Point m = 1000 points all data points
n C2(m) sdepth Cc2(m) sdepth C2(m) sdepth
40 0.00030 0.00030 0.00308 0.250 0.00024 0.0103
80 0.00075 0.00182 0.00697 1.88 0.00089 0.143
160 0.00292 0.0136 0.0165 13.6 0.00318 2.35
320 0.0110 0.1 0.0421 m 0.0120 35.6
640 0.0436 1.08 0.109 995 0.0477 637
1280 0.180 8.90 0.315 8690 0.197 11100
2560 0.786 721 1.1 0.797
5120 3.18 583 3.83 3.47
10240 12.7 141 14.0
20480 61.3 55.7 67.1
40960 239 244 278
81920 1010 1020 1170

Algorithm sdepth was implemented in C++ to get a fair comparison.
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EXAMPLE: DEPTH OF US COUNTIES

Exact aHD of all n = 33144 US counties, computation time <2 mins.

aHD-median: Vermillion County, Indiana (aHD = 14571/n). o



CONCLUSION

Quantiles and multivariate data:

e Different approaches; inherently geometric.

e Halfspace depth and the floating body are the same concept.
e Halfspace depth distributions.

e Huge overlaps of statistics with geometry.

What we do not know:

e When are floating bodies smooth?

When does halfspace depth characterize distributions?

Is the triangle characterized by its halfspace depth?
How to reconstruct P from its depth? (Homothety conjecture)

Structural properties of the depth level sets?
e How to compute the median efficiently?

75



SELECTED LITERATURE

[1] David L. Donoho and Miriam Gasko. Breakdown properties of location estimates
based on halfspace depth and projected outlyingness. Ann. Statist.,
20(4):1803-1827, 1992.

[2] Charles Dupin. Applications de Géométrie et de Méchanique. Bachelier, Paris, 1822.

[3] Branko Griinbaum. Partitions of mass-distributions and of convex bodies by
hyperplanes. Pacific J. Math., 10:1257-1261, 1960.

[4] Peter ). Rousseeuw and Ida Ruts. The depth function of a population distribution.
Metrika, 49(3):213-244, 1999.

[5] Carsten Schiitt and Elisabeth M. Werner. The convex floating body. Math. Scand.,
66(2):275-290, 1990.

[6] Christopher G. Small. Measures of centrality for multivariate and directional
distributions. Canad. J. Statist., 15(1):31-39, 1987.

[7] Anja Struyf and Peter J. Rousseeuw. Halfspace depth and regression depth
characterize the empirical distribution. J. Multivariate Anal., 69(1):135-153, 1999.

[8] John W. Tukey. Mathematics and the picturing of data. In Proceedings of the
International Congress of Mathematicians, Vol. 2, pages 523-531, 1975.

[9] Yijun Zuo and Robert Serfling. General notions of statistical depth function. Ann.
Statist., 28(2):461-482, 2000.

76



PROBLEM: SMOOTHNESS OF THE DEPTH

Smooth quasi-concave density is not sufficient for smooth depth
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Smooth quasi-concave density is not sufficient for smooth depth
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DEPTH CHARACTERIZATION: PROOF I

A measure P € P (RY) is called a-symmetric (Eaton, 1981) if

P(t) = / exp (i(t,x)) dP(x) =& (||t]],) forallte RY
Rd
forsome &: R — R. For X = (Xq,...,Xq) ~ P, these measures satisfy
d d—1
X,u) = lul|, X1 forallueS"
For the depth of a-symmetric P

D(GP) = inf P((Xu)< (u))= inf P(lull, X < (5 u)

= < — _
P (%< inf G/ lull) = Fr (= )
for B8 the conjugate index to o, and Fy the c.d.f. of X;.
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DEPTH CHARACTERIZATION: PROOF Il

Fix v € (0,1) and take ¢, (t) = exp (— ||t]|)) for v < a < 1. Then

e Measure P, with characteristic function ), exists (Lévy, 1937);
e The conjugate indexto a < 1is 8 = oc; and
e For the characteristic function of Xy with X ~ P, we have

Eexp(itX;) =exp(—|t|") forallteR,
i.e. F; does not depend on a.
AlL P, € P (RY) have the same depth

D(x;Pa)=Fi(—|x|l,) forallxeRd
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DEPTH CHARACTERIZATION: PROOF II

For v = 1/2, the density of P, with o = 1 (left) and a = 1/2 (right).
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