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MOTIVATION: THE MEDIAN

The median of X ∼ P ∈ P (R) is any m ∈ R such that

min{P(X ≤ m),P(X ≥ m)} ≥ 1/2.
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MOTIVATION: THE MEDIAN

The median and the mean of X ∼ P ∈ P (R)
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MOTIVATION: THE MEDIAN

The median and the mean under contamination (5% at x = 20)
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MOTIVATION: THE MEDIAN

The median and the mean under contamination (5% at x = 50)
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MOTIVATION: THE MEDIAN

The median has a number of advantages:

• Always exists;
• Very robust (i.e., hard to disturb);
• Equivariant to monotone transformations;
• Easy to compute;
• A member of the family of quantiles Q(α) = F−1(α), α ∈ [0, 1].

Our main problem:

What is a median for multivariate data?
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MOTIVATION: THE MEDIAN

The median has a number of advantages:

• Always exists;
• Very robust (i.e., hard to disturb);
• Equivariant to monotone transformations;
• Easy to compute;
• A member of the family of quantiles Q(α) = F−1(α), α ∈ [0, 1].

Our main problem:

What are the quantiles for multivariate data?
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STATISTICAL DEPTH

Statistical depth function: Ordering data in multivariate spaces.
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Introduced in 1975 (Tukey); studied intensively since the 1990s.
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STATISTICAL DEPTH FUNCTION

For P
(
Rd) Borel probability measures on Rd, consider the depth

D : Rd × P
(
Rd

)
→ [0, 1] : (x,P) 7→ D(x,P).
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PRINCIPAL GOAL: DISTRIBUTION-CHARACTERIZING DEPTHS

Find a depth that:

C1 characterizes probability distributions uniquely,
C2 is highly (e.g., affine) equivariant,
C3 induces robust medians, and
C4 is fast to compute.

Impact: A universal framework of multivariate nonparametrics.

å Data exploration/statistical estimation and testing/visualisation
free of parametric assumptions for complex datasets.
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HALFSPACE DEPTH

Halfspace depth (Tukey, 1975) of a point x ∈ Rd w.r.t. P ∈ P
(
Rd)

D(x;P) = inf
H∈H(x)

P (H) .
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HALFSPACE DEPTH

D (x;Pn) = min
# of observations in a halfspace that contains x

n
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APPLICATION: BAGPLOT

Bagplot: A multivariate boxplot (Rousseeuw et al., 1999)
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DEPTH: LEVEL SETS

D(·;P) is always quasi-concave, i.e. for each δ ∈ [0, 1]

Pδ =
{
x ∈ Rd : D(x;P) ≥ δ

}
is convex
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DEPTH: LEVEL SETS

D(·;P) is always quasi-concave, i.e. for each δ ∈ [0, 1]
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DEPTH: LEVEL SETS

We can write (Rousseeuw and Struyf, 1999; Zuo and Serfling, 2000)

Pδ =
{
x ∈ Rd : D(x;P) ≥ δ

}
=

∩
{H ∈ H : P(H) > 1− δ} .
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MOTIVATION: GRÜNBAUM’S INEQUALITY

Convex body K ∈ Kd: compact, convex K ⊂ Rd with non-empty inter.

Identify P uniform on K with K å The depth D(x; K) of K ∈ Kd.

Proposition (Grünbaum, 1960)
Let K ∈ Kd, and X uniform on K. Then

D (E X; K) ≥
(

d
d+ 1

)d
.

• limd→∞

(
d
d+1

)d
= exp(−1) ≈ 0.37.
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NONPARAMETRICS OUTSIDE STATISTICS: HALFSPACE DEPTH

Halfspace
depth

(Statistics)

Floating
bodies
(Affine

geometry)

Measures
of

symmetry
(Convex
analysis)

Center-
points,
k-sets
(Discrete
math.)

Radon
transforms
(Integral
geometry)

(Outer)
billiard
problems
(Dynamical
systems)
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FLOATING BODY

Definition (Dupin, 1822)
A convex body K[δ] is the Dupin floating body of K ∈ Kd for δ ≥ 0 if
each supporting hyperplane of K[δ] cuts off a set of volume δ from K.
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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Dupin’s floating body of K ∈ K2 for δ = 0.3
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Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ∈ K2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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CONVEX FLOATING BODY

Definition (Schütt and Werner, 1990)
Let K ∈ Kd with vol (K) = 1 and let δ ∈ (0, 1/2).
The convex floating body of K associated with δ is given by

Kδ =
∩

{H ∈ H : vol (K ∩ H) ≥ 1− δ} .

Proposition (Schütt and Werner, 1990)

• Kδ always exists.
• If K[δ] exists, then K[δ] = Kδ .
• Just as K[δ], also Kδ has “nice” properties.
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CONVEX FLOATING BODY

Convex floating body of K always exists
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DEPTH: ASYMPTOTIC NORMALITY

Let Pn ∈ P
(
Rd

)
be the empirical measure of n i.i.d. variables from P.

√
n (D(x;Pn)− D(x;P)) is asymptotically normal

⇐⇒ D(x;P) is realised by a single halfspace H ∈ H(x) (Massé, 2004)
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PROBLEM: SMOOTHNESS OF THE DEPTH

Elliptically symmetric distributions have smooth depth contours
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SMOOTHNESS OF FLOATING BODIES

Problem (Massé and Theodorescu, 1994)

Is there a non-elliptical distribution with smooth depth contours?

Proposition (Meyer and Reisner, 1991)
Uniform distributions on smooth, symmetric, strictly convex bodies
have smooth depth.

Open problem: An analogous result for P ∈ P
(
Rd) with a density?
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DEPTH CHARACTERIZATION CONJECTURE

Question: (Struyf and Rousseeuw, 1999)
Does for any P 6= Q in P

(
Rd) exist x ∈ Rd such that D(x;P) 6= D(x;Q)?

Positive answers for P ∈ P
(
Rd) such that:

• d = 1 (there depth ∼ distribution function).
• P is purely atomic, with finitely many atoms.
(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021)

• P is atomic. (Cuesta-Albertos and Nieto-Reyes, 2008)
• P is properly integrable. (Koshevoy, 2003)
• P has a smooth density. (Hassairi and Regaieg, 2008)
• all Dupin’s floating bodies of P exist.
(Kong and Zuo, 2010; Nagy, Schütt, Werner, 2019)

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
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CHARACTERIZATION CONJECTURE

Question: (Struyf and Rousseeuw, 1999)
Does for any P 6= Q in P

(
Rd) exist x ∈ Rd such that D(x;P) 6= D(x;Q)?

Not for d > 1.
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MEASURES OF SYMMETRY OF CONVEX BODIES

Definition (Grünbaum, 1963)
A mapping ρ : Kd → [0, 1] is a measure of symmetry if
• ρ(K) = 1 if and only if K is symmetric;
• ρ(T(K)) = ρ(K) for non-singular affine transforms T : Rd → Rd; and
• ρ is continuous.

The Winternitz measure of symmetry: (Winternitz, 1910s)

ρ(K) = 2max
x∈Rd

D(x; K),

i.e. twice the depth of the halfspace median of K.
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FUNK’S CHARACTERIZATION OF SYMMETRY

Theorem
K ∈ Kd is symmetric around the origin 0 if and only if

vol (K ∩ H) = vol (K) /2

for every halfspace H ∈ H(0).

Proof:

• R2: easy;
• R3: proved in the 1910s (Funk, 1915);
• Rd: proved 50 years later using spherical harmonics (Schneider, 1970).
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FUNK THEOREM: PROOF FOR d = 2

D(x; K) = 1/2 =⇒ K ∈ Kd is symmetric around x
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SYMMETRY OF MEASURES IN STATISTICS

A measure P ∈ P
(
Rd) with X ∼ P is called (Zuo and Serfling, 2000)

• halfspace symmetric around x ∈ Rd if D(x;P) ≥ 1/2,
• angularly symmetric around x ∈ Rd if

X− x
‖X− x‖

d
= − X− x

‖X− x‖ .

Theorem (Funk, 1915 and Schneider, 1970)
A uniform distribution on K ∈ Kd is halfspace symmetric if and only if
it is angularly symmetric.
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SYMMETRY OF MEASURES IN STATISTICS

Zuo and Serfling (2000)

Proof:
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SYMMETRY OF MEASURES IN STATISTICS

Dutta, Ghosh, Chaudhuri (2011)

Proof:
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SYMMETRY OF MEASURES IN STATISTICS

Rousseeuw and Struyf (2004)

Proof: For any dimension d.
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IDEA OF THE PROOF (ROUSSEEUW AND STRUYF, 2004)

(i). The map x 7→ (x1/ |xd| , x2/ |xd| , . . . , xd/ |xd|) takes H(0) to
halfspaces inside hyperplanes H± =

{
x ∈ Rd : xd = ±1

}
.

(ii). Apply the Cramér-Wold theorem (Cramér and Wold, 1936) in Rd−1.
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MINIMIZING HALFSPACE AND BARYCENTRIC CUT

• H ∈ H(x) is a minimizing halfspace of P at x if P(H) = D(x;P).
• A hyperplane ∂H is a barycentric cut of P at x if the centroid of the
cut (conditional distribution) of P by ∂H is x.

ß For K ∈ Kd, the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).
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RECONSTRUCTING K FROM ITS FLOATING BODY

ß For K ∈ Kd, the boundary of any minimizing halfspace is a
barycentric cut (Blaschke, 1917).

à Starting from a single point y ∈ ∂K, reconstruct the boundary of K.
à Outer billiards with Kδ as a table (Tabachnikov, 1995).
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OUTER BILLIARD: CIRCLE I

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE I

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: CIRCLE II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG I

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG I

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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OUTER BILLIARD: EGG II

Reconstructing K ∈ K2 from its floating body using barycentric cuts.
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DEPTH FOR DIRECTIONAL DATA

Angular halfspace depth (Small, 1987) of x ∈ Sd−1 w.r.t. P ∈ P
(
Sd−1

)
aHD(x;P) = inf {P (H) : H ∈ H(0), x ∈ H} .
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ANGULAR HALFSPACE DEPTH: ALMOST FORGOTTEN

Pandolfo, Paindaveine, Porzio (2018):

“The main drawback of the angular halfspace depth is the
computational effort it requires, especially for higher dimen-
sions.”

In R, function sdepth in package depth (Genest et al., 2019)

• works only for d = 2, 3,
• computing aHD for a single point x ∈ S2:
- for sample size n = 200 takes 7 seconds,
- for sample size n = 500 takes 2 minutes,
- for sample size n = 1000 takes forever.
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A GEOMETRIC ALGORITHM C2(M): d = 3 (IN SECONDS)

d = 3 single Point m = 1000 points all data points

n C2(m) sdepth C2(m) sdepth C2(m) sdepth

40 0.00030 0.00030 0.00308 0.250 0.00024 0.0103
80 0.00075 0.00182 0.00697 1.88 0.00089 0.143
160 0.00292 0.0136 0.0165 13.6 0.00318 2.35
320 0.0110 0.111 0.0421 111 0.0120 35.6
640 0.0436 1.08 0.109 995 0.0477 637
1280 0.180 8.90 0.315 8690 0.197 11100
2560 0.786 72.1 1.11 0.797
5120 3.18 583 3.83 3.47
10240 12.7 14.1 14.0
20480 61.3 55.7 67.1
40960 239 244 278
81920 1010 1020 1170

Algorithm sdepth was implemented in C++ to get a fair comparison.
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EXAMPLE: DEPTH OF US COUNTIES

Exact aHD of all n = 33 144 US counties, computation time <2 mins.

aHD-median: Vermillion County, Indiana (aHD = 14 571/n). 74



CONCLUSION

Quantiles and multivariate data:

• Different approaches; inherently geometric.
• Halfspace depth and the floating body are the same concept.
• Halfspace depth does not characterize distributions.
• Huge overlaps of statistics with geometry.

What we do not know:

• When are floating bodies smooth?
• When does halfspace depth characterize distributions?
• Is the triangle characterized by its halfspace depth?
• How to reconstruct P from its depth? (Homothety conjecture)
• Structural properties of the depth level sets?
• How to compute the median efficiently?
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PROBLEM: SMOOTHNESS OF THE DEPTH

Smooth quasi-concave density is not sufficient for smooth depth
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DEPTH CHARACTERIZATION: PROOF I

A measure P ∈ P
(
Rd) is called α-symmetric (Eaton, 1981) if

ψ(t) =
∫
Rd

exp (i 〈t, x〉) dP(x) = ξ (‖t‖α) for all t ∈ Rd

for some ξ : R → R. For X = (X1, . . . , Xd) ∼ P, these measures satisfy

〈X,u〉 d
= ‖u‖α X1 for all u ∈ Sd−1.

For the depth of α-symmetric P

D (x;P) = inf
u∈Sd−1

P (〈X,u〉 ≤ 〈x,u〉) = inf
u∈Sd−1

P (‖u‖α X1 ≤ 〈x,u〉)

= P
(
X1 ≤ inf

u∈Sd−1
〈x,u〉 / ‖u‖α

)
= F1

(
−‖x‖β

)
for β the conjugate index to α, and F1 the c.d.f. of X1.
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DEPTH CHARACTERIZATION: PROOF II

Fix γ ∈ (0, 1) and take ψα(t) = exp (−‖t‖γα) for γ ≤ α ≤ 1. Then

• Measure Pα with characteristic function ψα exists (Lévy, 1937);
• The conjugate index to α ≤ 1 is β = ∞; and
• For the characteristic function of X1 with X ∼ Pα we have

E exp (i t X1) = exp (− |t|γ) for all t ∈ R,

i.e. F1 does not depend on α.

All Pα ∈ P
(
Rd) have the same depth

D (x;Pα) = F1 (−‖x‖∞) for all x ∈ Rd.

80



DEPTH CHARACTERIZATION: PROOF III

For γ = 1/2, the density of Pα with α = 1 (left) and α = 1/2 (right).
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