Published: Journal papers
- Elías, A., and Nagy, S. (2024). Statistical properties of partially observed integrated functional depths. TEST. To appear.
- Mendroš, E., and Nagy, S. (2024). Explicit bivariate simplicial depth. Journal of Multivariate Analysis. To appear.
- Liu, X., Liu, Y., Laketa, P., Nagy, S., and Chen Y. (2024). Exact and approximate computation of the scatter halfspace depth. Computational Statistics. To appear.
- Nagy, S., and Laketa, P. (2024). Theoretical properties of angular halfspace depth. Bernoulli. To appear.
- Bočinec, F., and Nagy, S. (2024). Conditions for equality in Anderson's theorem. Statistics & Probability Letters, to appear.
- Nagy, S., Demni, H., Buttarazzi, D., and Porzio, G. C. (2023). Theory of angular depth for classification of directional data. Advances in Data Analysis and Classification. To appear.
- Fojtík, V., Laketa, P., Mozharovskyi, P., and Nagy, S. (2023). On exact computation of Tukey depth central regions. Journal of Computational and Graphical Statistics. To appear.
- Pokorný, D., Laketa, P., and Nagy, S. (2024). Another look at halfspace depth: Flag halfspaces with applications. Journal of Nonparametric Statistics, 36(1), 165-181.
- Nagy, S. (2023). Simplicial depth and its median: Selected properties and limitations. Statistical Analysis and Data Mining, 16(4), 374-390.
- Laketa, P., and Nagy, S. (2023). Simplicial depth: Characterisation and reconstruction. Statistical Analysis and Data Mining, 16(4), 358-373.
- Balko, M., Scheucher, M., and Valtr, P. (2023). Tight bounds on the expected number of holes in random point sets. Random Structures and Algorithms, 62(1), 29-51.
- Laketa, P., Pokorný, D., and Nagy, S. (2022). Simple halfspace depth. Electronic Communications in Probability, 27, 1-12.
- Hendrych, F., and Nagy, S. (2022). A note on the convergence of lift zonoids of measures. Stat, 11(1), e453.
- Hlubinka, D., Kotík, L., and Šiman, M. (2022). Multivariate quantiles with both overall and directional probability interpretation. Scandinavian Journal of Statistics, 49(4), 1586-1604.
- Hallin, M., Hlubinka, D., and Hudecová, Š. (2022). Efficient fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. Journal of the Americal Statistical Association. To appear.
- Ferraty, F., and Nagy. S. (2022). Scalar-on-function local linear regression and beyond. Biometrika, 109(2), 439-455.
- Patáková, Z., Tancer, M., and Wagner, U. (2022). Barycentric Cuts Through a Convex Body. Discrete & Computational Geometry, 68, 1133–1154.
- Laketa, P. and Nagy, S. (2022). Halfspace depth for general measures: The ray basis theorem and its consequences. Statistical Papers, 63, 849-883.
- Helander, S., Laketa, P., Ilmonen, P., Nagy, S., Van Bever, G., and Viitasaari, L. (2022). Integrated shape-sensitive functional metrics. Journal of Multivariate Analysis, 189, 104880.
- Balko, M., Chodounský, D., Hubička, J., Konečný, M., and Vena, L. (2022). Big Ramsey degrees of 3-uniform hypergraphs are finite. Combinatorica, 42, 659–672.
- Laketa, P., and Nagy, S. (2021). Reconstruction of atomic measures from their halfspace depth. Journal of Multivariate Analysis, 183, 104727.
- Dyckerhoff, R., and Mozharovskyi, P., and Nagy, S. (2021). Approximate computation of projection depths. Computational Statistics & Data Analysis, 157, 107166.
- Nagy, S., Helander, S., Van Bever, G., Viitasaari, L., and Ilmonen, P. (2021). Flexible integrated functional depths. Bernoulli, 27(1), 673-701.
- Rataj, J. (2021). Mean Euler characteristic of stationary random closed sets. Stochastic Processes and their Applications, 137, 252-271.
- Vencálek, O. and Hlubinka, D. (2021). A depth-based modification of the k-nearest neighbour method. Kybernetika, 57 (1), 15-37.
- Nagy, S., Dyckerhoff, R., and Mozharovskyi, P. (2020). Uniform convergence rates for the approximated halfspace and projection depth. Electronic Journal of Statistics, 14 (2), 3939-3975.
- Dvořák, J., Hudecová, Š., and Nagy, S. (2020). Clover plot: Versatile visualisation in nonparametric classification. Statistical Analysis and Data Mining, 13, 548-564.
- de Mesmay, A., Rieck, Y., Sedgwick, E., and Tancer, M. (2021). The unbearable hardness of unknotting. Advances in Mathematics, 381, 107648.
- Nagy, S. and Dvořák, J. (2021). Illumination depth. Journal of Computational and Graphical Statistics, 30 (1), 78-90.
- Nagy, S. (2021). Halfspace depth does not characterize probability distributions. Statistical Papers, 62, 1135-1139.
- Aichholzer, O., Balko, M., Hackl, T., Kynčl, J., Parada, I., Scheucher, M., Valtr P., and Vogtenhuber, B. (2020). A superlinear lower bound on the number of 5-holes. Journal of Combinatorial Theory, Series A, 173, 105236.
- Kynčl, J. (2020). Simple realizability of complete abstract topological graphs simplified. Discrete and Computational Geometry 64(1), 1-27.
- Balko, M., Scheucher, M., and Valtr, P. (2020). Holes and islands in random point sets. Random Structures & Algorithms, 63, 308-326.
- Balko, M., Bhore, S., Martínez-Sandoval, L., and Valtr, P. (2020). On Erdős–Szekeres-type problems for k-convex point sets. European Journal of Combinatorics, 89, 103157.
- Nagy, S. (2020). Scatter halfspace depth: Geometric insights. Applications of Mathematics, 65, 287–298.
- Nagy, S., Schütt, C., and Werner, E. (2019). Halfspace depth and floating body. Statistics Surveys, 13, 52-118.
- Nagy, S. (2019). Scatter halfspace depth for K-symmetric distributions. Statistics & Probability Letters, 149, 171-177.
- Nagy, S. and Ferraty, F. (2018). Data depth for measurable noisy random functions. Journal of Multivariate Analysis, 170, 95-114.
Published: Conference proceedings
- Laketa, P. and Nagy, S. (2023). Partial reconstruction of measures from halfspace depth. In: Grilli, L., Lupparelli, M., Rampichini, C., Rocco, E., Vichi, M., editors, Statistical Models and Methods for Data Science. CLADAG 2021. Studies in Classification, Data Analysis, and Knowledge Organization, pages 93-105. Springer, Cham.
- Nagy, S., Laketa, P., and Dyckerhoff, R. (2021). Angular halfspace depth: computation. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 169-172. Firenze University Press.
- Demni, H., Buttarazzi, D., Nagy, S., and Porzio, G. C. (2021). Angular halfspace depth: classification using spherical bagdistances. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 316-319. Firenze University Press.
- Laketa, P. and Nagy, S. (2021). Angular halfspace depth: central regions. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 356-359. Firenze University Press.
- Balko, M., Scheucher, M., and Valtr, P. (2021). Tight bounds on the expected number of holes in random point sets. 37th European Workshop on Computational Geometry (EuroCG 2021), 2:1-2:7.
- Balko, M., Scheucher, M., and Valtr, P. (2021). Tight bounds on the expected number of holes in random point sets. Extended Abstracts EuroComb 2021, 411-416.
- Nagy, S. (2020). Depth in infinite-dimensional spaces. In: Aneiros G., Horová I., Hušková M., Vieu P. (eds) Functional and High-Dimensional Statistics and Related Fields. IWFOS 2020, pages 187-195. Contributions to Statistics. Springer, Cham
- Nagy, S. (2020). The halfspace depth characterization problem. In: La Rocca M., Liseo B., Salmaso L. (eds) Nonparametric Statistics. ISNPS 2018, 379-389. Springer Proceedings in Mathematics & Statistics, vol 339. Springer, Cham.
- Nagy, S. and Dvořák, J. (2020). Robust depth-based inference in elliptical models. In: Balzano S., Porzio G. C., Salvatore R., Vistocco D., Vichi M. (eds) Statistical Learning and Modeling in Data Analysis - Methods and Applications. 129-137. Studies in Classification, Data Analysis and Knowledge Organization. Springer.
- Patáková, Z., Tancer, M., and Wagner, U. (2020). Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry (SoCG 2020), 62:1-62:16.
- Balko, M., Scheucher, M., and Valtr, P. (2020). Holes and islands in random point sets. 36th International Symposium on Computational Geometry (SoCG 2020), 14:1-14:16.
- Nagy, S. and Dvořák, J. (2019). Illumination in depth analysis. In Giovanni C. Porzio, Francesca Greselin, and Simona Balzano, editors, CLADAG 2019. Book of Short Papers, 353-356. Università di Cassino e del Lazio Meridionale.
- Fulek, R. and Kyncl, J. (2019). Z2-genus of graphs and minimum rank of partial symmetric matrices. Proceedings of the 35th International Symposium on Computational Geometry (SoCG 2019), Leibniz International Proceedings in Informatics (LIPIcs) 129, 39:1-39:16, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
- de Mesmay, A., Rieck, Y., Sedgwick, E., and Tancer, M. (2019). The unbearable hardness of unknotting. Proceedings of the 35th International Symposium on Computational Geometry (SoCG 2019), Leibniz International Proceedings in Informatics (LIPIcs) 129, 49:1–49:19, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
- Balko, M., Bhore, S., Martínez-Sandoval, L., and Valtr, P. (2019). On Erdős–Szekeres-type problems for k-convex point sets. In the Proceedings of the 30th International Workshop on Combinatorial Algorithms (IWOCA 2019), Lecture Notes in Computer Science, vol 11638. Springer, Cham, 35-47.
Under review
- Wynne, G., and Nagy, S. (2021). Statistical depth meets machine learning: Kernel mean embeddings and depth in functional data analysis. Under review.
Copyright (c) 2023 Stanislav Nagy. All rights reserved.